Сегодня 03 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → мозг
Быстрый переход

Учёные создали и испытали мозговой имплантат для общения одними только мыслями

Исследователи из Университета Дьюка создали мозговой имплантат, который может обеспечить общение на основе одних только мыслей. Устройство призвано помочь людям, страдающим речевыми расстройствами или неспособными на вербальное общение по тем или иным причинам. Первые опыты показали хорошие перспективы разработки.

 Источник изображений: Dan Vahaba/Duke University

Источник изображений: Dan Vahaba/Duke University

Эксперименты по преобразованию мозговой активности в текст и голосовое общение путём сканирования сигналов головного мозга пациентов позволяют сегодня транслировать «мысли» в слова со скоростью до 78 слов в минуту. Это как слушать аудиокнигу на вдвое меньшей скорости, заявляют авторы исследования. Обычно человек проговаривает до 160 слов в минуту, что делает общение живым и естественным. Чтобы люди с поражением речевого аппарата также могли участвовать в таком общении, им нужны более точные датчики мозговой активности.

Группа учёных из Университета Дьюка совместно с лабораторией биомедицинской инженерии университета создали датчик активности мозга с 256 сенсорами на кусочке пластика размером с почтовую марку. Новый датчик способен улавливать сигналы от одиночных нейронов, что позволяет с высокой точностью определять их активность.

Учёные не собирались читать мысли напрямую. Но по комплексу сигналов для мышц речевого аппарата — языка, гортани и лицевых — они рассчитывали с высокой точностью определять невысказанные вслух мысли пациентов (речью управляют до 100 мышц, за сигналами к которым необходимо следить). Таким образом, мысленно произнесённая фраза должна была транслироваться в сигналы мышцам, и по этим прямо считанным с мозга данным нужно было воспроизвести всё, что пациент собирался сказать. В случае пациента с поражением речевого аппарата мысли так бы и остались в коре головного мозга и дальше сигналы бы не прошли, но считанные датчиком они получили возможность быть воспроизведёнными компьютером.

Эксперимент с четырьмя пациентами показал, что средняя точность распознавания мысленно произнесённых слов составляет 40 %, а максимальная — 84 %. Алгоритм распознавания обучался в режиме «слушай и повторяй». Пациент произносил бессмысленные короткие сочетания букв, на которых алгоритм учился распознавать мозговую активность для того или иного сочетания звуков.

 Слева старый менее чувствительный датчик, справа — новый, с кором проводили эксперимент

Слева старый менее чувствительный датчик, справа — новый, с которым проводили эксперимент

Несмотря на относительно низкий процент распознавания звуков, команда учёных говорит об успехе. Дело в том, что алгоритм обучался всего 90 секунд в ходе 15-минутного тестирования. Ровно столько времени было у экспериментаторов с каждым пациентом. Это происходило в ходе плановых операций на мозге пациентов. Когда нейрохирурги заканчивали операцию, они давали учёным 15 минут поработать с пациентами над их программой. Без доступа к открытому мозгу, на определённый участок коры которого напрямую устанавливался датчик, работа не могла быть проделана.

На следующем этапе учёные собираются создать беспроводные датчики, чтобы работать с пациентами в обычных условиях, а не в операционной. Когда-нибудь это приведёт к появлению удобных мозговых имплантатов для трансляции мыслей в речь или цифровые сообщения.

Созданы наушники с датчиком ЭЭГ, которые проследят за здоровьем мозга и порекомендуют музыку для настроения

Американский стартап Niura разработал наушники-вкладыши для постоянного слежения за здоровьем мозга. Своевременно обнаружить нарушения в работе мозга, например, инсульт, означает спасти человеку здоровье и жизнь. В качестве бонуса технология Niura обещает создать рекомендательный сервис по предложению музыки на основе слежения за настроением пользователя, тем самым оберегая уже душевное здоровье человека.

 Источник изображений: Niura

Источник изображений: Niura

Стартап вырос из личных переживаний его организаторов, ближайшие родственники которых пострадали от поражений головного мозга. Сначала проект был создан на базе Arduino, и лишь затем был реализован в виде компактной платы со сторонами 20 × 12 мм, которая помещается в относительно компактные наушники.

Ключевым элементом устройства являются сухие силиконовые датчики-контакты, которые размещены по периметру наушников. Они обеспечивают достаточно хороший контакт с кожей и, по словам компании, не снижают чувствительность при обильном потоотделении.

Решение Niura простое в использовании и может использоваться постоянно в отличие от обычных датчиков для снятия электроэнцефалограммы (ЭЭГ). Это особенно важно, например, в ходе проведения операций на головном мозге. В обычных условиях ЭЭГ снимается до и после проведения операции, а с помощью наушников Niura это можно делать непосредственно в процессе проведения операции.

Близость внутриушного электрода наушников Niura к слуховой коре головного мозга, которая отвечает за обработку музыки и аудио, обещает раскрыть ещё один потенциал устройства. Наушники смогут различать настроение пользователей, и с помощью рекомендательного ИИ-сервиса будут воспроизводить музыку, соответствующую душевному состоянию.

Данные с наушников передаются в смартфон, где происходит их обработка. На всех этапах происходит шифрование трафика и данных в соответствии с требованиями американских регуляторов. Компания получила ряд предварительных патентов на ключевые технологии и ведёт переговоры с ведущими мировыми брендами о выпуске коммерческой продукции на основе платформы Niura. Самостоятельно этим она заниматься не будет. Будет только предоставлять лицензии.

ИИ воссоздал композицию Pink Floyd по мозговой активности слушателей, и звучит это ужасно

Исследователи Калифорнийского университета (UC) в Беркли впервые получили музыкальную композицию, воссозданную по сигналам из мозга человека. Пациенты прослушивали трек «Another Brick in the Wall (Part 1)» группы Pink Floyd, а имплантированные в мозг датчики снимали показания. Различение ритма и мелодии в сигналах мозга поможет разработать имплантаты для людей, страдающих нарушениями в области восприятия речи и эмоций и не только.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Для поиска зон мозга, ответственных за восприятие музыки в широком смысле этого слова, в мозг 29 пациентов были имплантированы по 2268 электродов. Всем им ставили композицию Pink Floyd «Ещё один кирпич в стене», ставшую классикой рока. Параллельно прослушиванию с датчиков снимались показания мозговой активности, которые затем расшифровывали с помощью линейного и нелинейного ИИ-алгоритма.

Что в итоге получилось, можно прослушать в ролике ниже. Ценители Pink Floyd могут прийти в ужас от услышанного. С другой стороны, мозг может служить своеобразным фильтром, придающим композиции новизну и определённую оригинальность. Нельзя исключать, что это, в том числе, приведёт к появлению новых музыкальных находок и даже направлений.

При поиске ориентированных на музыку областей в головном мозге учёные решали другую задачу. Есть большой класс пациентов, страдающих от нарушений в восприятии и воспроизведении речи. В общем случае это называется просодией. Просодия подразумевает невозможность выделить в речи эмоции, ударения, акценты и другие нюансы, что сильно ограничивает страдающих ею в социализации. Считывание мелодии прямо с мозга помогло определить центры, отвечающие за мелодику и ритм. Фактически это путь к преодолению недуга с помощью имплантатов и ИИ-алгоритмов.

 Источник изображения: Ludovic Bellier/CC-BY 4.0

Источник изображения: Ludovic Bellier/CC-BY 4.0

Оказалось, что за музыкальную активность мозга отвечают другие отделы, чем те, которые поддерживают речь. Прежде всего — это верхняя височная извилина, а также области в сенсорно-моторной коре и нижней лобной извилине. В этих областях были расположены 347 электродов из 2268, установленных для эксперимента. Это то разрешение, с которым была считана с мозга легендарная композиция Pink Floyd, что наверняка можно улучшить в последующих экспериментах. Интересно, как к этому отнесутся правообладатели?

В Китае создали датчик активности мозга, который подключается через ухо

Современные технологии не позволяют осуществлять высокоточное дистанционное считывание активности мозга человека. Самым действенным способом по-прежнему остаётся установка электродов на кожу головы или имплантация непосредственно в мозг. Возможно, с этим сможет помочь новый китайский датчик активности мозга, который очень просто устанавливается в ушной канал пациента.

 Источник изображений: Nature Communications (2023)

Источник изображений: Nature Communications (2023)

Разработанное группой ученых из китайского Университета Цинхуа устройство получило название SpiralE. Это тонкая многослойная полоска длиной 50 мм и шириной 3 мм. Полоска состоит из двух слоёв полимера с памятью формы, слоя электротермической активации формы и слоя с сенсорами для снятия электроэнцефалограммы.

Для ввода в ушной проход пациента датчик скручивается в плотный жгут. Уже на месте на датчик воздействуют электромагнитным полем, которое вызывает нагрев в его активирующем слое и, как следствие, заставляет полимерные слои с памятью формы распрямляться. Этот процесс приводит к тому, что датчик плотно соприкасается с кожей, и это обеспечивает аккуратное снятие сигналов мозговой активности. При этом каждый раз датчик принимает индивидуальные формы слухового канала, что делает его универсальным. Наконец, он не загораживает слуховой проход и не снижает чувствительность слуха человека, и легко извлекается.

Лабораторные испытания показали, что датчик удобен для длительного ношения и определяет активность мозга с точностью до 95 %. Учёные рассчитывают, что подобный датчик найдёт применение в изучении качества сна пациентов (спать с современными наголовными датчиками то ещё удовольствие), при выявлении эпилепсии и даже для слежения за активностью водителей, о чём они рассказали в своей статье в журнале Nature Communications.

Precision Neuroscience впервые подключила свой нейроинтерфейс к мозгу человека — раньше, чем Neuralink

Компания Precision Neuroscience, основанная в 2021 году, ставит своей целью помощь парализованным пациентам в управлении цифровыми устройствами путём декодирования нейронных сигналов мозга. Созданная компанией система Layer 7 Cortical Interface расшифровывает сигналы мозга и переводит их в компьютерные команды. В январе 2023 года Precision объявила о новом раунде финансирования на сумму $41 млн. А недавно компания провела своё первое клиническое исследование на людях.

 Источник изображений: Precision Neuroscience

Источник изображений: Precision Neuroscience

Системе BCI (brain–computer interface) от Precision под названием Layer 7 Cortical Interface требуются считанные секунды, чтобы в реальном времени произвести визуализацию активности мозга пациента в высоком разрешении. По утверждению компании, система генерирует изображение нейронной активности с самым высоким разрешением из когда-либо зарегистрированных. «Это было невероятно сюрреалистично, — заявил президент компании Крейг Мермель (Craig Mermel). — От характера данных и нашей способности визуализировать это, знаете ли, у меня… мурашки по коже».

В ходе исследования нейроинтерфейс Layer 7 Cortical Interface был временно помещён в мозг трёх пациентов, которые уже подвергались нейрохирургическим операциям по удалению опухолей. Датчик системы представляет собой массив электродов, слегка напоминающий кусочек скотча. Precision утверждает, что, будучи тоньше человеческого волоса, датчики прилегают к поверхности мозга, не повреждая ткани.

По словам Мермела, технология работала именно так, как ожидалось, поэтому в дальнейшем область исследований планируется значительно расширить. Если испытания пройдут в соответствии с планом Precision, пациенты с тяжёлыми дегенеративными заболеваниями, такими как боковой амиотрофический склероз (БАС), могут в конечном итоге восстановить некоторую способность общаться с близкими, перемещая курсоры, печатая и даже получат доступ к социальным сетям.

По словам доктора Бенджамина Рапопорта (Benjamin Rapoport), соучредителя и главного научного сотрудника Precision, ряд различных академических медицинских центров предложил поддержать пилотное клиническое исследование компании. Он рассказал, что компания сотрудничала с Рокфеллеровским институтом неврологии Университета Западной Вирджинии, и обе организации готовились к процедурам более чем за год.

Продолжительность одного обследования составляет 15 минут. Один из пациентов спал во время процедуры, а двое бодрствовали для изучения их мозговой активности во время общения. «Я никогда не видел такого количества данных, 1000 каналов в реальном времени, — рассказал непосредственно проводивший операции хирург Питер Конрад (Peter Konrad), заведующий отделением нейрохирургии Рокфеллеровского института неврологии. — Вы наблюдаете процесс мышления, это удивительно!».

Электроды достаточно давно используются на практике, чтобы помочь нейрохирургам контролировать активность мозга, но разрешение обычных систем очень низкое. Стандартные электроды имеют размер около 4 мм, в то время как массив Precision такого размера может вместить от 500 до 1000 контактов. «Это разница между взглядом на мир с помощью старой черно-белой камеры и просмотром в высоком разрешении», — говорит Конрад.

В конечном итоге Precision надеется, что её технология вообще не потребует открытой операции на головном мозге. Хирург будет иметь возможность имплантировать массив, сделав тонкий разрез в черепе и вставив нейроинтерфейс, как письмо в почтовый ящик. Щель будет толщиной менее миллиметра — настолько маленькой, что пациентам не нужно брить волосы для процедуры.

Конкурирующие компании в сфере BCI, такие как Paradromics и Neuralink, разработали системы, предназначенные для введения непосредственно в ткань мозга. Это даёт чёткое представление о деятельности каждого нейрона, но может привести к повреждению тканей. Уровень детализации не является обязательным для декодирования речи или достижения других функций, к которым стремится Precision, поэтому компания в конечном итоге сосредоточилась на минимально инвазивном подходе.

Хотя исследование на людях является важной вехой, путь к рынку для этого типа технологий долог. Precision ещё не получила одобрения FDA (Food and Drug Administration) на своё устройство, и компании придётся тесно сотрудничать с регулирующими органами для проведения испытаний и сбора данных о безопасности. Несколько компаний, таких как Synchron, Paradromics и Blackrock Neurotech, также создали устройства с похожей функциональностью, но по состоянию на июнь ни одной компании не удалось получить окончательное одобрение FDA.

В ближайшие недели Precision проведёт тестовое подключение своего устройств к ещё двум пациентам в рамках пилотного клинического исследования. Precision также сотрудничает с такими организациями в сфере здравоохранения, как Mount Sinai в Нью-Йорке и Massachusetts General Hospital в Бостоне, и надеется получить полное разрешение FDA на своё устройство первого поколения в следующем году.

Стартап Neuralink Илона Маска начнёт испытания мозговых имплантов на людях в этом году

Во время визита во французскую столицу с целью участия в конференции VivaTech Илон Маск (Elon Musk) заявил, что первый случай испытания на людях мозговых имплантов компании Neuralink, которую он основал и возглавляет, состоится до конца текущего года. Для этого будет подобран доброволец из числа пациентов, имеющих проблемы с подвижностью либо всех четырёх, либо только двух нижних конечностей.

 Источник изображения: Reuters, Gonzalo Fuentes

Источник изображения: Reuters, Gonzalo Fuentes

Как известно, Neuralink как раз создаёт подобные импланты с целью решения проблем людей, утративших подвижность конечностей. Маск не стал уточнять, какое количество добровольцев будет готово принять участие в испытаниях, и как долго они могут продлиться. По его словам, первый эксперимент в этой сфере может быть проведён до конца текущего года. В прошлом месяце Neuralink получила соответствующее разрешение со стороны регулирующих органов США, которого очень долго ждала до этого. Данное разрешение подразумевает не только одобрение операций на черепной коробке и коре головного мозга пациентов в пределах юрисдикции США, но и использование для этих целей соответствующих хирургических роботов. Они должны просверлить в черепе пациента небольшое отверстие, установить в него имплант и подключить его к коре головного мозга при помощи тонких вживляемых электродов.

Neuralink уже давно проводит испытания на овцах, свиньях и обезьянах, они даже становились объектом пристального внимания правозащитников. Первая попытка получить разрешение на тестирование имплантов на людях была предпринята Neuralink ещё в начале 2022 года, но тогда ведомство FDA отказало стартапу в такой возможности. Экспертов насторожила необходимость периодически извлекать имплант для замены аккумулятора, вероятность миграции электродов в точках вживления в кору мозга, а также опасность самой процедуры их извлечения.

Длительное пребывание в космосе оказывает пагубное влияние на мозг, доказали учёные

Космические полёты продолжительностью от шести месяцев сказываются на физическом состоянии мозга астронавтов, и членам экипажа перед возвращением в космос следует делать перерыв не менее трёх лет, установила группа американских учёных.

 Источник изображения: roscosmos.ru

Источник изображения: roscosmos.ru

Исследователи провели сканирование мозга 30 астронавтов, сделанное перед космическими полётами продолжительностью две недели, полгода и год, после чего сравнили результаты с результатами сканирования, сделанного после возвращения на Землю. Как выяснилось, желудочки — заполненные спинномозговой жидкостью полости в головном мозге — после пребывания на МКС более шести месяцев значительно расширились. Результаты исследования имеют большое значение для будущих долгосрочных миссий: NASA и его партнёры в обозримом будущем начнут реализацию программы Artemis с постоянным пребыванием человека на Луне, а в перспективе человека планируют оправить и в дальний космос, в том числе на Марс.

Спинномозговая жидкость обеспечивает мозгу защиту и питание, а также отвод отработанных веществ. Во время пребывания в космосе телесные жидкости в организме перемещаются, а мозг прижимается к верхней области черепа, что вызывает увеличение желудочков. Из 30 принявших участие в исследовании астронавтов 8 отправились в двухнедельные миссии, 18 — в миссии продолжительностью 6 месяцев, а 4 пребывали на орбите около года. Учёные установили, что степень увеличения желудочков варьировалась в зависимости от продолжительности нахождения на орбите. Наиболее заметной оказалась разница между первой и второй группами, а вот между второй и третьей она уже столь значительной не была, то есть через полгода рост желудочков замедляется. У астронавтов «двухнедельной» группы эффект был минимальным, и это хорошая новость для коммерческого сегмента космической отрасли.

 Источник изображения: Pete Linforth / pixabay.com

Источник изображения: Pete Linforth / pixabay.com

У 11 участвовавших в исследовании астронавтов было более трёх лет на восстановление между миссиями, и после каждого последующего полёта у них отмечалось увеличение желудочков. У 7 астронавтов времени на восстановление было меньше, но и желудочки после очередных полётов в этих случаях увеличивались незначительно. Исследователям не удалось установить, сколько именно требуется времени для реабилитации, но анализ показал, что через 6–7 месяцев мозг восстанавливался на 55–64 % от первоначального уровня. Исходя из полученных данных, учёные предположили, что на полное восстановление желудочков уходит не менее трёх лет.

Результаты исследования смогут использоваться NASA и другими космическими агентствами при планировании предстоящих миссий, но необходима дополнительная работа. В рамках нового проекта будут изучаться долгосрочные последствия полугодового пребывания на орбите — с периодом восстановления до пяти лет.

Стартапу Илона Маска Neuralink разрешили испытывать мозговые интерфейсы на людях

Neuralink является одной из компаний Илона Маска (Elon Musk), на фоне прочих сохраняющих статус стартапа, и в данном случае ключевым этапом её развития должны были стать клинические испытания вживляемых в черепную коробку датчиков на людях. После многочисленных попыток добиться этого ранее, Neuralink наконец смог получить разрешение регуляторов США на проведение клинических испытаний на людях.

 Источник изображения: Neuralink

Источник изображения: Neuralink

Об этом стало известно, как отмечает CNBC, из заявлений представителей Neuralink, хотя компания пока не начала поиск добровольцев, которые могли бы принять участие в клинических испытаниях так называемого «мозгового интерфейса». Вчера компании Neuralink удалось получить одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) США на проведение клинических испытаний на людях.

Напомним, что уже испытанные на свиньях и обезьянах импланты, устанавливаемые в черепной коробке в непосредственной близости от коры головного мозга, теоретически должны позволить парализованным пациентам управлять курсором компьютера буквально «силой мысли», открывая дорогу к созданию специализированных бионических протезов и позволяя утратившим контроль над речевым аппаратом и моторные функции людям вернуть способность общаться с окружающими. Помимо сверления отверстия в черепной коробке, установка датчика Neuralink подразумевает имплантацию тонких электродов в участки коры головного мозга пациента.

Многообещающий стартап Илона Маска до сих пор имел довольно сложную историю взаимодействия с регулирующими органами. Жалобы активистов на предположительно негуманное отношение к подопытным животным дополнились нарушениями в области правил транспортировки биологических отходов. В марте FDA отвергло заявку Neuralink на проведение клинических испытаний на людях, указав компании на необходимость устранения десятков претензий. В конце прошлого года Илон Маск даже выразил готовность когда-нибудь установить себе имплант Neuralink, подчёркивая тем самым перспективность и безопасность данной разработки.

В Китае успешно соединили мозг обезьяны с компьютером — животное смогло управлять роборукой

4 мая группа китайских учёных под руководством профессора Дуань Фэна (Duan Feng) из Нанкайского университета впервые в мире провела успешный эксперимент по подключению интервенционного интерфейса мозг-компьютер (BCI) к мозгу нечеловекообразной обезьяны. До этого подобные эксперименты учёные проводили на овцах.

 Источник изображений: news.nankai.edu.cn

Источник изображений: news.nankai.edu.cn

В проведении эксперимента также участвовали специалисты больницы общего профиля Народно-освободительной армии Китая и медицинской фирмы Shanghai HeartCare Medical Technology Co. В ходе операции учёные с помощью минимально инвазивной хирургии без краниотомии (трепанации черепа) провели датчики через сосуды мозга и сагиттальный синус, достигнув моторной коры мозга обезьяны. Это позволило идентифицировать и собирать сигналы электроэнцефалограммы (ЭЭГ), благодаря чему животное смогло осуществлять активное управление роботизированной рукой.

В отличие от американской компании Neuralink, работающей над созданием интерфейса мозг-компьютер (BCI) инвазивным методом, технология китайских учёных не требует трепанации черепа, менее травматична и более безопасна для пациента. Эндоваскулярная хирургия представляет собой способ вмешательства без скальпеля, когда доступ к органу осуществляется через сосуды. По словам профессора Фэна, результаты эксперимента способствовали продвижению интервенционного интерфейса мозг-компьютер от лабораторных перспективных исследований к клиническому применению.

Интервенционный BCI, наряду с инвазивным и неинвазивным BCI, входит в число трёх основных технологий, находящимися в стадии исследований и разработок (НИОКР) в этом сегменте биологических наук. Интервенционный BCI, позволяющий соединить мозг с компьютером с помощью минимального хирургического вмешательства, наносит меньше вреда, чем инвазивная технология, обеспечивая при этом лучшее качество регистрации ЭЭГ, чем неинвазивная технология.

По сравнению с традиционным инвазивным и неинвазивным BCI, интервенционный BCI сочетает в себе стабильность распознавания сигналов и безопасность, сообщил Фэн агентству Синьхуа.

«Успех первого испытания на животных — это прорыв от нуля к единице, но достижение успеха в клинике — это процесс от 1 до 100, поэтому нам еще предстоит пройти долгий путь»,заявил газете Beijing Daily участвовавший в эксперименте нейрохирург Ма Юнцзе (Ma Yongjie) из больницы Xuanwu Hospital при медицинском университете Capital Medical University.

Учёные смогли посмотреть на мир глазами мыши: ИИ помог восстановить видеоряд по сигналам мозга грызуна

Группа учёных Федеральной политехнической школы Лозанны (Швейцария) разработала основанную на алгоритмах искусственного интеллекта систему, способную в реальном времени интерпретировать сигналы мозга грызунов и по ним реконструировать то, что видит мышь. В частности, учёные смогли по мозговым сигналам восстановить видео, которое показывали мыши.

 Источник изображения: youtube.com/@epfl

Источник изображения: youtube.com/@epfl

Учёные назвали свой ИИ-алгоритм CEBRA — он был обучен на сопоставлении нейронной активности и определённых кадров видео. Это позволило ему впоследствии предсказывать и реконструировать видеоклипы, которые смотрит мышь. В демонстрационном ролике примером послужил фрагмент снятого в шестидесятых чёрно-белого фильма, на котором человек подбегает к машине и открывает её багажник. На другом экране показан восстановленный CEBRA видеоряд — записи почти идентичны, хотя на второй изображение периодически подёргивается.

Регистрация и измерение мозговой активности грызуна производились при помощи электродов, подключённых к области зрительной коры их мозга; а также при помощи оптических зондов генетически модифицированных особей, чьи нейроны подсвечивались зелёным при передаче информации. Мышам давали смотреть фильмы и в реальном времени регистрировали активность их мозга, сопоставляя два потока данных и тем самым обучая CEBRA — алгоритм усвоил, какие сигналы мозга были связаны с конкретными кадрами ленты.

Затем алгоритм ИИ получил в качестве входных данных незнакомый для себя поток мозговой активности от мыши, которая смотрела другой фрагмент видео. Исходя из этого, система CEBRA смогла сама в реальном времени восстановить соответствующие этим сигналам кадры, которые учёные объединили в отдельный фильм.

Neuralink Илона Маска ищет партнёра для тестирования мозговых имплантов на людях

Находящаяся в тени прочих амбиций Илона Маска (Elon Musk) компания Neuralink не теряет надежды получить разрешение регуляторов США на проведение испытаний разрабатываемых ею мозговых имплантов на людях. Подобное устройство позволит подопытным буквально управлять компьютером силой мысли, и недавно стало известно, что компания уже ищет партнёра среди нейрохирургических центров США.

 Источник изображения: Neuralink

Источник изображения: Neuralink

Разработку нейроинтерфейса Neuralink ведёт с 2016 года и уже с той или иной степенью успеха испытала прототипы имплантов на свиньях и обезьянах. Эти эксперименты сопровождались серией скандалов, связанных как с обвинениями в негуманном обращении с животными, так и с нарушениями в сфере перевозки биологических материалов. Федеральные расследования по этим делам в отношении Neuralink до сих пор не завершились. В начале прошлого года Neuralink получила отказ по своей заявке на проведение испытаний с участием людей.

Компания не опустила руки и продолжала работать над устранением замечаний регуляторов. Как сообщает Reuters со ссылкой на информированные источники, Neuralink уже попыталась договориться с ведущим нейрохирургическим центром в штате Аризона, чтобы в будущем провести на его базе испытания своих мозговых имплантов на людях из числа добровольцев. Это не единственный медицинский центр, в который обратилась Neuralink, а потому пока рано говорить о том, с кем же в итоге компания будет готова сотрудничать. Представители всех заинтересованных сторон предоставить свои комментарии агентству Reuters отказались.

Новая статья: Мозг — компьютеру: всё о современных Brain Computer Interfaces

Данные берутся из публикации Мозг — компьютеру: всё о современных Brain Computer Interfaces

Создан простой для вживления мозговой имплантат, который позволит набирать текст силой мысли

Компания Precision Neuroscience создала устройство, которое называет чем-то вроде седьмого слоя для больших полушарий головного мозга человека. Оно дополнит шесть биологических слоёв и позволит парализованным людям управлять цифровыми устройствами, используя только нейронные сигналы, фактически, силой мысли. При этом вживлять его куда проще, чем многие аналоги.

 Источник изображений: Precision Neuroscience

Источник изображений: Precision Neuroscience

Пациенты с тяжёлыми дегенеративными заболеваниями, такими как боковой амиотрофический склероз (БАС), при котором теряется способность к выполнению любых контролируемых движений, смогут снова общаться с близкими, перемещая курсор и набирая текст с помощью своего разума.

Новое устройство, получившее название Layer 7 Cortical Interface (кортикальный интерфейс 7 слоя), является мозговым имплантатом, позволяющим пациентам с параличом управлять цифровыми устройствами, используя только нейронные сигналы. Внешне Layer 7 напоминает кусок скотча. На самом деле это массив электродов, который тоньше человеческого волоса, что позволяет размещать его на поверхности мозга, не повреждая ткани.

Соучредителями Precision являются Майкл Магер (Michael Mager) и Бенджамин Рапопорт (Benjamin Rapoport), который также входит в состав соучредителей компании Neuralink Илона Маска (Elon Musk). Компания Precision Neuroscience была создана в 2021 году. В отличие от Neuralink, работающей над способами имплантации чипов непосредственно в ткань мозга, Precision полагается на менее травмирующие хирургические технологии.

Для вживления массива Layer 7 в черепе делают очень тонкий разрез, в который и вставляют устройство, «как письмо в щель почтового ящика». По словам Магера, который также является гендиректором Precision, образовавшаяся в результате разреза щель имеет толщину менее миллиметра — она настолько мала, что даже нет необходимости выбривать волосы на голове для выполнения операции.

Количество электродов в массиве можно увеличить, что, как утверждает Магера, в конечном итоге позволит использовать устройство и при неврологических заболеваниях. Что также немаловажно, имплантат можно будет удалить, если пациент решит, что он ему больше не нужен или потребуется замена на более новую версию в будущем.

Джейкоб Робинсон (Jacob Robinson), доцент Университета Райса и основатель компании Motif Neurotech, отметил, что технология Precision несёт меньше рисков для пациента, но поскольку устройство не вводится непосредственно в ткань мозга, сила передаваемых сигналов мозга будет меньше, чем у некоторых других имплантатов.

Precision уже успешно использовала Layer 7 для декодирования нейронных сигналов у животных и Магер выразил надежду на получение в ближайшие месяцы одобрения Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) на тестирование технологии на людях.

Человеку впервые вживили в мозг имплантат для лечения депрессии

В то время как Neuralink Илона Маска планирует начать испытания мозговых имплантов на людях в течение шести месяцев, нейротехнологическая компания Inner Cosmos объявила, что её устройство для лечения депрессии было успешно подключено к мозгу первого пациента.

«Цифровая таблетка» Inner Cosmos состоит из двух частей: электрода, который помещается внутрь черепа, и «рецептурной капсулы», которая закрепляется снаружи на голове. Имплантат посылает крошечные электрические импульсы в поражённую депрессией область мозга — левую дорсолатеральную префронтальную кору — один раз в день в течение 15 минут. Внешнее устройство размером с мелкую монету работает, измеряя при этом нейронную активность, чтобы определить правильный объём стимуляции по мере её прохождения. В остальное время наличия внешнего устройства на голове не требуется. Тестовый пациент из Сент-Луиса, штат Миссури, должен тестировать инновацию Inner Cosmos в течение одного года.

Компания таким образом перешла ко второму этапу испытаний. В сентябре 2022 года учёные вживили электроды в череп пациента, чтобы вылечить его депрессию, в надежде, что его состояние можно будет облегчить короткими и слабыми электрическими импульсами в мозг. Это испытание было первым в своём роде, в котором для лечения депрессии использовались имплантаты непосредственно в черепе, и оно вполне может предвещать новую эру науки, решающей проблемы психического здоровья с помощью аппаратных средств, а не более традиционных методов, таких как психиатрия и психология.

Общая длительность исследований планируется в пределах одного года, на протяжении которого в него могут быть вовлечены ещё несколько пациентов. Испытания находятся на раннем этапе, но их перспективность трудно отрицать. Идея состоит в том, что операция должна быть как можно менее инвазивной, чтобы достичь наилучшего уровня приживаемости.

Одновременно с этими исследованиями, другие компании работают над полностью безоперационными методами, такими, как шлем с электродами. Такое устройство значительно больше, чем предлагаемый Inner Cosmos имплантат и может оказаться сложнее и менее эффективно в применении.

Идея подобных устройств не совсем новая, учитывая, что подобные методы годами использовались для лечения эпилепсии и болезни Паркинсона, но лечение депрессии таким способом ещё никто не осуществлял. Генеральный директор Inner Cosmos Мерон Грибец (Meron Gribetz) говорит: «Мир находится в состоянии хаоса, ведущего к беспорядочному познанию. Этот эффект ощущают миллионы, что приводит к резкому ухудшению ментального состояния и подавленности. Мы считаем, что наш подход может облегчить жизнь тем, кто страдает депрессией, и в конечном итоге распространится на другие когнитивные расстройства. Наша миссия — создать мир, который восстанавливает когнитивные способности человечества, восстанавливая баланс человеческого разума. Нам придётся посмотреть, как все будет развиваться дальше, но это определённо захватывающее начало».

Учёные повысили внимательность человека, просто посветив в голову лазером

Ряд психических заболеваний и возрастные изменения вызывают ухудшение рабочей памяти у людей. Учёные ищут пути к простой стимуляции мозга, чтобы спасать пациентов от таких явлений. Например, уже предложены методики электрической и электромагнитной стимуляции правого полушария, эффект от которых держится до одного месяца. Новое исследование обещает улучшить кратковременную память с помощью лазера, просто посветив им в нужную область мозга сквозь черепную коробку.

 Источник изображения: Science Advances

Источник изображения: Science Advances

Учёные из Великобритании, Китая и США провели серию исследований на 90 студентах, в ходе которых убедительно доказали возможность неинвазивной (без хирургического вмешательства) лазерной стимуляции мозга, о чём они подробно рассказали в журнале Science Advances.

Молодые люди в возрасте от 18 до 25 лет обоих полов были разделены на две группы. Людей из одной группы облучали со стороны левой префронтальной коры, а испытуемых из другой группы облучали со стороны правой префронтальной коры. Облучение велось лазером с длиной волны 1064 нм и на более коротких длинах волн. Также в каждой группе проводили эксперименты с ложными включениями лазера, чтобы исключить эффект самовнушения (плацебо).

Студенты в процессе эксперимента должны были запомнить и позже воспроизвести либо цвета объектов, либо их ориентацию в пространстве. Как выяснилось, внимательность однозначно увеличивалась примерно на 10 % только в одном случае — когда на правую префронтальную кору светили лазером с длиной волны 1064 нм. Этот результат позволяет надеяться, что в будущем могут появиться инструменты простой и не требующей хирургического вмешательства операции по улучшению кратковременной памяти.

Впрочем, до этого ещё далеко. Пока учёные не понимают механизма реакции мозга. Это может быть как улучшение снабжения клеток мозга кислородом, так и стимуляция митохондрий, которые, в свою очередь, увеличивают выброс молекул АТФ в мозг и насыщают нейроны энергией. В любом случае предложенная методика не имеет последствий для здоровья мозга и человека (хотя если это перерасход АТФ, то это ещё вопрос).

На следующем этапе исследований учёные намерены проследить, как долго держится эффект стимуляции памяти лазером. Если эффект долговременный, то можно будет работать над его включением в клиническую практику.


window-new
Soft
Hard
Тренды 🔥
Apple анонсирует на WWDC обновленный центр управления настройками iOS 4 ч.
Новая статья: Почему 48 Гбайт памяти — это не страшно: обзор Patriot Viper Elite 5 RGB TUF Gaming Alliance DDR5-6600 2×24 Гбайт 5 ч.
Китайский зонд «Чанъэ-6» прилунился для первого в истории сбора грунта с обратной стороны Луны 7 ч.
Nvidia будет ежегодно выпускать новых архитектуры для ИИ-ускорителей 8 ч.
Цифровых людей теперь смогут создавать все: Nvidia откроет доступ к микросервисам ACE 8 ч.
NVIDIA представила ускорители GB200 NVL2, платформы HGX B100/B200 и анонсировала экосистему следуюшего поколения Vera Rubin 13 ч.
ASRock Rack анонсировала ИИ-системы с ускорителями NVIDIA Blackwell GB200, B200 и B100 14 ч.
Asus представила ROG Ally X — портативную консоль с мощной батареей и улучшенной памятью 14 ч.
Проект STMicroelectronics по строительству предприятия в Италии получит 2 млрд евро субсидий 23 ч.
Boeing отменила пилотируемый полёт космического корабля Starliner к МКС за несколько минут до старта 01-06 22:57