Оригинал материала: https://3dnews.ru./1107112

Учёные нашли способ запускать большие ИИ-модели на системах мощностью 13 Вт, вместо 700 Вт

Исследователи из Калифорнийского университета в Санта-Круз разработали метод, позволяющий запускать большие языковые модели искусственного интеллекта (LLM) с миллиардами параметров при значительно меньшем потреблении энергии, чем у современных систем.

 Источник изображения: Stefan Steinbauer/Unsplash

Источник изображения: Stefan Steinbauer/Unsplash

Новый метод позволил запустить LLV с миллиардами параметров при энергопотреблении системы всего в 13 Вт, что эквивалентно потреблению бытовой светодиодной лампы. Это достижение особенно впечатляет на фоне текущих показателей энергопотребления ИИ-ускорителей. Современные графические процессоры для центров обработки данных, такие как Nvidia H100 и H200, потребляют около 700 Вт, а грядущий Blackwell B200 вообще может использовать до 1200 Вт на один GPU. Таким образом, новый метод оказывается в 50 раз эффективнее популярных сегодня решений, пишет Tom's Hardware.

Ключом к успеху стало устранение матричного умножения (MatMul) из процессов обучения. Исследователи применили два метода. Первый — это перевод системы счисления в троичную, использующую значения -1, 0 и 1, что позволило заменить умножение на простое суммирование чисел. Второй метод основан на внедрении временных вычислений, при котором сеть получила эффективную «память», позволившую работать быстрее, но с меньшим количеством выполняемых операций. Работа проводилась на специализированной системе с FPGA, но исследователи подчёркивают, что большинство их методов повышения эффективности можно применить с помощью открытого программного обеспечения и настройки уже существующих на сегодня систем.

Исследование было вдохновлено работой Microsoft по использованию троичных чисел в нейронных сетях, а в качестве эталонной большой модели учёные использовали LLaMa от Meta. Рюдзи Чжу (Rui-Jie Zhu), один из аспирантов, работавших над проектом, объяснил суть достижения в замене дорогостоящих операций на более дешёвые. Хотя пока неясно, можно ли применить этот подход ко всем системам в области ИИ и языковых моделей в качестве универсального, потенциально он может радикально изменить ландшафт ИИ.

Немаловажно, что учёные открыли исходный код своей разработки, что позволит крупным игрокам рынка ИИ, таким как Meta, OpenAI, Google, Nvidia и другим беспрепятственно воспользоваться новым достижением для обработки рабочих нагрузок и создания более быстрых и энергоэффективных систем искусственного интеллекта. В конечном итоге это приведёт к тому, что ИИ сможет полнофункционально работать на персональных компьютерах и мобильных устройствах, и приблизится к уровню функциональности человеческого мозга.



Оригинал материала: https://3dnews.ru./1107112