Amazon, AMD и целый ряд стартапов всё активнее предлагают альтернативы ускорителям искусственного интеллекта Nvidia, но списывать лидера рынка со счетов пока рано — он предлагает пока неоспоримые преимущества в производительности и программной части, пишет The New York Times.
Год назад AMD представила ИИ-ускорители Instinct MI300, объем продаж которых, по предварительным оценкам, к настоящему моменту достиг $5 млрд. Amazon на этой неделе представила второе поколение собственных ускорителей Trainium, которые помогут компании усилить позиции в области обучения и запуска систем ИИ. Судя по реакции клиентов на эти решения, у Nvidia появились достойные альтернативы. Компания долгое время доминировала на этом рынке, и это помогло ей увеличить свою стоимость до $3 трлн, но теперь её конкуренты показывают, что способны обеспечить более высокую скорость по более скромным ценам.
Это происходит потому, что ряд технологических компаний, включая не только гигантов масштаба AMD и Amazon, но и небольшие стартапы, начали адаптировать чипы для запуска уже обученных моделей ИИ (инференса). «Настоящая коммерческая ценность появляется с инференсом, и инференс начинает набирать масштаб. Мы начинаем наблюдать изменения», — заявил гендиректор Qualcomm Криштиану Амон (Cristiano Amon); производитель мобильных чипов также собирается использовать для задач с ИИ ускорители Amazon. Конкуренты Nvidia решили последовать её примеру и в другом — они начали предлагать не просто ускорители, а предназначенные для работы с ИИ готовые компьютеры.
Усилившаяся конкуренция в области оборудования для ИИ стала очевидной, когда Amazon предложила клиентам аренду ресурсов на базе новых ускорителей Trainium2 — положительные отзывы оставила в том числе Apple. Amazon также представила серверы на 16 и 64 ускорителя с высокоскоростными соединениями, которые способствуют росту производительности при запуске систем ИИ. Amazon также строит гигантский кластер ИИ для своего партнёра Anthropic, который сможет обучать свои модели на сотнях тысяч ускорителей Trainium2. Расходы операторов центров обработки данных на системы ИИ без чипов Nvidia в этом году вырастут на 49 % и достигнут $126 млрд, подсчитали аналитики Omdia.
Но рост конкуренции пока не означает, что Nvidia утратит лидерство. Гендиректор компании Дженсен Хуанг (Jensen Huang) указал, что у неё есть преимущества в области ПО для ИИ, а также в возможностях запуска моделей. Новым чипам семейства Blackwell требуется больше мощности для работы, но их производительность из расчёта на ватт выше, чем у конкурентов. Актуальные ускорители Nvidia стоят до $15 000 за штуку, а цены на Blackwell, как ожидается, будут исчисляться несколькими десятками тысяч. Тем временем поднимаются стартапы, которым удалось привлечь инвестиции, — SambaNova Systems, Groq и Cerebras Systems уверяют, что при запуске ИИ им удалось добиться преимущества как в производительности, так и в цене.
Некоторые клиенты уже начали менять рабочие схемы. Исполнительный директор «Техасского центра передовых вычислений» (Texas Advanced Computing Center) Дэн Станционе (Dan Stanzione) рассказал, что организация планирует купить в следующем году суперкомпьютер на базе Blackwell, но для задач по запуску ИИ будет использовать ускорители SambaNova, у которых более низкие потребление энергии и цена. Meta✴ также сообщила, что обучала модель Llama 3.1 405B на чипах Nvidia, но для её работы использует ускорители AMD MI300s.
Amazon, Google, Microsoft и Meta✴ продолжают возводить большие кластеры на ускорителях Nvidia, но разрабатывают и свои собственные чипы для ускорения определённых вычислительных задач с целью снижения затрат. Google до конца года намерена начать сдавать в аренду ресурсы на своих ускорителях Trillium шестого поколения, которые почти впятеро быстрее предшественников. Amazon, которая считается отстающей в области ИИ, в этом году выделила на ИИ-ускорители и другое вычислительное оборудование $75 млрд. Ускорители Trainium первого поколения не получили большого признания на рынке, но в отношении Trainium2 компания настроена более оптимистически, а через год ожидается выпуск ещё более мощных Trainium3. По оценкам экспертов, Trainium2 предложат на 40-% прирост производительности на доллар по сравнению с оборудованием на базе Nvidia.