Оригинал материала: https://3dnews.ru./1115108

Российские учёные помогли создать детекторы нейтрино для мегапроекта DUNE в США

На днях шведское издательство MDPI опубликовало статью, посвящённую разработке детекторов нейтрино для научного мегапроекта DUNE (Deep Underground Neutrino Experiment) в США. Хотя в коллективе учёных были представители нескольких стран, существенный вклад в разработку непосредственно датчиков внесли российские исследователи из Московского физико-технического института (МФТИ).

 Источник изображения: techspot.com

Источник изображения: techspot.com

Два месяца назад в США завершилась выемка грунта для подземных лабораторий проекта DUNE. До установки датчиков пройдёт ещё от четырёх до семи лет. Но в целом, если судить по статье, основа для производства этих приборов уже создана. У сотрудников МФТИ богатейший опыт в разработке детекторов элементарных частиц и он был востребован в новой работе.

Нейтрино остаются не до конца изученными частицами. Они слабо взаимодействуют с веществом, поэтому их крайне сложно обнаружить. В двух лабораториях DUNE будут установлены огромные резервуары с жидким аргоном (до 17 тыс. тонн), стенки которых оснастят детекторами фотонов. Эти датчики должны выдерживать частые перепады температур от криогенных до комнатных и обратно, оставаясь при этом высокочувствительными.

 Схема эксперимента. Источник изображения: Wikipedia

Схема эксперимента. Источник изображения: Wikipedia

«При разработке [детектора] ArCLight самым сложным этапом для нас оказалось подобрать материалы так, чтобы детектор выдерживал многократные охлаждения до температуры жидкого аргона (~187 К) и нагревы обратно до комнатной. При низкой температуре полимерные материалы становятся хрупкими, и, если коэффициенты теплового расширения не соответствуют, детектор может разрушиться — треснуть», — пояснил Игорь Кресло, ведущий научный сотрудник лаборатории фундаментальных взаимодействий МФТИ.

Задача фотонного детектора ArCLight — регистрировать сцинтилляционный свет, возникающий при взаимодействии нейтрино со средой время-проекционной камеры, в данном случае с жидким аргоном. Особенность прибора ArCLight заключается в том, что его можно разместить на стенках аргоновой камеры, так как он не искажает направляющее электрическое поле.

 Слева фотография прототипа ArgonCube Light (ArCLight) размером 10 × 10 см2 с четырьмя кремниевыеми фотоумножителями (SiPM). Справа принципиальная схема работы ArCLight на примере детектирования излучения вакуумного ультрафиолета. Источник: Instruments.

Слева — прототип ArgonCube Light (ArCLight) размером 10 × 10 см с четырьмя кремниевыми фотоумножителями (SiPM). Справа —принципиальная схема работы ArCLight на примере детектирования излучения вакуумного ультрафиолета. Источник: Instruments.

Физики сконструировали ряд прототипов фотодетекторов разных размеров: от небольших, 5 × 5 см, до необходимых для ближнего детектора DUNE — 30 × 50 см. Фотонная эффективность приборов варьируется в диапазоне от 0,8 % до 2,2 %. Чем выше эффективность, тем слабее энергии фотонов сможет регистрировать датчик, что напрямую влияет на сбор статистически значимых данных. Чем больше регистраций, тем полнее информация о свойствах нейтрино.

Учёные из МФТИ испытали различные способы нанесения рабочих слоёв на датчики и разработали систему контроля качества приборов. Для полного покрытия стенок двух огромных резервуаров потребуется огромное количество детекторов, включая запасные модули. Для этого уже создан необходимый задел.



Оригинал материала: https://3dnews.ru./1115108