Сегодня 03 июля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → аэс
Быстрый переход

В США начали строить первую в мире АЭС на малом реакторе TerraPower — проект финансирует Билл Гейтс

На днях в штате Вайоминг начались работы по перестройке старой угольной электростанции в АЭС на малом реакторе на расплаве солей. Это первый в мире проект такого рода: малый и модульный реактор, который заменит собой угольную электростанцию. Проект реализует компания TerraPower, главным инвестором которой является Билл Гейтс (Bill Gates). Лицензия на строительство АЭС пока не выдана, но это не помешало начать работы по проекту.

 Источник изображений: TerraPower

Источник изображений: TerraPower

Национальный регулятор США близок в выдаче лицензии на реактор Natrium. В компании TerraPower не стали дожидаться окончательного решения и приступили к работе над инфраструктурой объекта и к некоторым базовым «неядерным» работам. На пике строительства объект обеспечит до 1600 рабочих мест. После ввода АЭС в строй, что ожидается к концу этого или в начале следующего десятилетия, около сотни сотрудников угольной электростанции будут приняты на работу на новом объекте. Всего обслуживание реактора и АЭС потребует около 250 человек персонала.

 Энергетический блок (остров) начнут строить в 2025 году

Энергетический блок (остров) начнут строить в 2025 году

В своём блоге Билл Гейтс пояснил, что реактор на расплаве солей натрия (проект Natrium) намного безопаснее и эффективнее традиционных водных реакторов. Расплав солей может без последствий поглотить любые излишки тепла от распада радиоактивного топлива, тогда как вода в данных условиях привела бы к взрыву пара. В случае аварии расплав солей просто остынет, к тому же, его не нужно перекачивать, он течёт практически сам. Наконец, буферная ёмкость для расплава соли позволяет держать в резерве излишки мощности, а это поможет компенсировать, например, колебания поставок солнечной и ветряной энергии.

Проект в штате Вайоминг подразумевает создание установки мощностью 345 МВтэ (электрической мощности). Буфер будет содержать расплав, достаточный для выработки 500 МВтэ. Температура солевого теплоносителя достигнет 900 °C. Во всём этом есть только одна проблема. Топливо HALEU для реактора Natrium и других перспективных установок приходится закупать в России. К запуску Natrium США надеется уйти от этой зависимости. По крайне мере, TerraPower с партнёрами начала процессы по созданию в США производства топлива для своих и подобных реакторов. О производстве самого сырья HALEU в США в достаточных объёмах пока не сообщается.

США больше не будут покупать уран в России, но есть исключения

В понедельник 13 мая 2024 года президент США Джозеф Байден (Joseph Biden) подписал закон, который запрещает импортировать в США обогащённый уран из России. Сделано это, чтобы ускорить добычу урана на территории США с созданием всех необходимых цепочек поставок. На эти цели из бюджета будет направлено $2,7 млрд — сумма, ранее утверждённая Конгрессом. Россия поставляет в США до 25 % низкообогащённого урана и почти весь высокообогащённый.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Во вчерашнем сообщении Белого дома, который цитирует агентство Интерфакс, сказано следующее: «В понедельник, 13 мая 2024 года, президент подписал (...) "Закон о запрете импорта российского урана", который запрещает импорт необлученного низкообогащенного урана, произведенного в Российской Федерации или российским предприятием».

По данным Министерства торговли США, поставки «Росатома» закрывают до 25 % потребностей страны в этом виде топлива для АЭС. Что касается урана, обогащённого до 20 % и более (высокообогащённого), то альтернатив российскому топливу практически нет. Потребность в топливе HALEU или металлическом высокопробном низкообогащённом урановом топливе пока не очень большая, в отличие от обычного низкообогащённого урана, который регулярно требуется почти сотне реакторов в США на АЭС и в научных учреждениях. Но без топлива HALEU никакие реакторы новых поколений работать не будут. Возможно поэтому высокообогащённый уран выведен из под санкций.

Что касается низкообогащённого урана, то в США с 2020 года остановлена всякая его добыча. В последние месяцы возобновлена работа трёх шахт в Аризоне и Юте. Только стране нужны сотни таких рудников и это проблема. Множество шахт и мест захоронений отходов находятся на землях индейцев. В прошлом они сильно пострадали от последствий, связанных с загрязнением вод и облучением. Поэтому сегодня общественность настроена крайне насторожено к попыткам властей и бизнеса возобновить добычу.

Сторонники ядерной энергетики уверены, что современные технологии помогут создать защищённые и безопасные техпроцессы по разработке урановых шахт, а законодатели на всех уровнях работают, чтобы процесс, наконец-то, пошёл. В частности, разрешена работа рудника, находящегося в районе национального мемориального парка недалеко от Большого Каньона. Местные власти пытаются добиться разрешения открыть там множество новых разработок, хотя сотни старых шахт ещё не очищены от радиации и загрязнений.

«Будущее чистой энергетики нашей страны не будет зависеть от российского импорта, — заявила министр энергетики Дженнифер Гранхолм (Jennifer Granholm). — Мы инвестируем в создание безопасной цепочки поставок ядерного топлива здесь, в Соединённых Штатах».

«Росатом» считает закон о запрете импорта российского обогащённого урана «дискриминационным и нерыночным», как сообщило в своём телеграмм-канале РИА Новости со ссылкой на госкорпорацию. По факту США продолжат покупать у России урановое топливо. По крайней мере, для перспективных реакторов. Но будут делать всё возможное, чтобы рано или поздно уйти от такой зависимости.

В Германии бывшие АЭС начали использовать под аккумуляторные хранилища энергии

Немецкое коммунальное предприятие Westfalen Weser сообщило о планах построить аккумуляторное хранилище энергии мощностью 120 МВт и ёмкостью 280 МВт·ч. Местом для создания хранилища выбрана бывшая атомная электростанция в Вюргассене в земле Северный Рейн-Вестфалия. Ранее для этих целей использовались в основном бывшие угольные электростанции. Об использование АЭС как площадки для размещения массивов аккумуляторов заявлено впервые.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Бывшие электростанции — угольные, атомные или другие — это практически идеальное место для создания аккумуляторных хранилищ энергии. Для этого есть уже созданная инфраструктура, подведены ЛЭП, имеются все основные лицензии. Уникальным для Германии стало сочетание таких факторов, как массовая остановка и вывод из эксплуатации АЭС в совокупности с развёртыванием электростанций на возобновляемой энергии. И было бы странно не воспользоваться открывающимися возможностями.

Атомная электростанция в Вюргассене мощностью 1912 МВт была остановлена в 1994 году. Её коммерческая эксплуатация стартовала в 1975 году. Реактору было всего 19 лет, когда его заглушили. Он не проработал и половины положенного срока. Топливные сборки и другое радиоактивное оборудование давно демонтированы. Землю под аккумуляторный проект компания Westfalen Weser получила от местных органов самоуправления на этой неделе.

Завершение строительства запланировано на вторую половину 2026 года, а общий объем инвестиций составит около €92 млн ($99,6 млн). «Мы инвестируем в накопление энергии, чтобы обеспечить безопасное и эффективное электроснабжение, поскольку производство энергии из возобновляемых источников продолжает расти», — сказал Юрген Нох (Jürgen Noch), управляющий директор муниципального предприятия.

Согласно представлениям компании, спрос на возобновляемую энергию, а также системы её хранения и распределения будет неуклонно расти. В частности, ожидается, что ёмкость аккумуляторных батарей в регионе Оствестфален-Липпе увеличится более чем в 12 раз и составит около 1 ГВт·ч, поскольку страна продолжает наращивать аккумуляторный парк.

Недавний анализ Института солнечной энергетики Фраунгофера показывает, что установленная база аккумуляторных батарей почти удвоилась в прошлом году, увеличившись с 4,4 ГВт / 6,5 ГВт·ч к концу 2022 года до 7,6 ГВт / 11,2 ГВт·ч к концу 2023 года. Институт заявил, что потребности в хранении энергии в Германии возрастут к 2030 году до более чем 130 ГВт·ч.

Ещё одна крупномасштабная система хранения планируется на площадке бывшей атомной электростанции в немецкой земле Шлезвиг-Гольштейн. PreussenElektra и её материнская компания E.ON намерены в конечном итоге разработать хранилище на 800 МВт / 1600 МВт·ч, что сделает его крупнейшим в Европе хранилищем энергии на аккумуляторных батареях. Заявка на создание хранилища на АЭС в Брокдорфе была подана в 2017 году. Электростанция прекратила работу 31 декабря 2021 года.

Первую «натриевую» АЭС Билла Гейтса начнут строить в июне даже без разрешения властей

Руководство основанной Биллом Гейтсом (Bill Gates) компании TerraPower сообщило, что перспективную АЭС на расплаве солей натрия начнут строить в июне даже в том случае, если разрешение от регулятора не успеют получить. Станция будет строиться рядом с угольной электростанцией Naughton вблизи города Кеммерер в штате Вайоминг, США. Ещё до постройки реактора необходимы значительные инфраструктурные изменения на площадке, а технически лицензия на такие работы не нужна.

 Источник изображения: TerraPower

Источник изображения: TerraPower

Исполнительный директор TerraPower Крис Левеск (Chris Levesque), сообщил Financial Times, что компания в этом месяце подаст заявку на получение разрешения регулирующих органов США на строительство своего реактора, который охлаждается не водой, а расплавом солей натрия. Подача заявки ожидалась в середине 2023 года, но затем была перенесена, как и сдвинут на два года график ввода объекта в строй. Для TerraPower и других разработчиков инновационных атомных реакторов барьером стало то, что основным поставщиком HALEU-топлива для них была и остаётся Россия.

И всё же, лёд определённо тронулся. По крайней мере, для АЭС TerraPower. Эта компания уже подвергается критике со стороны конкурентов за слишком большую поддержку со стороны федерального бюджета. Так, из бюджета США на строительство объекта будет выделено минимум $2 млрд. Но разве могло быть по-другому, если один из твоих организаторов Билл Гейтс, а партнёр проекта, который будет его эксплуатировать, Уоррен Баффет?

Реактор TerraPower в какой-то мере можно считать малым модульным реактором. Для США важно в этой сфере догнать Россию и Китай, где уже есть работающие объекты, подпадающие под эту категорию. Впереди делёж рынка АЭС в Африке и не только, поэтому проекты перспективных малых реакторов будут конкурировать наиболее остро. В таких обстоятельствах поддержка федеральных властей должна только приветствоваться.

Мощность реактора TerraPower составит 345 МВтэ. Соль натрия будет разогреваться почти до 900 °C, что даст возможность лучше использовать тепло, чем при охлаждении водой. Такой высокий нагрев, кстати, позволит создать буферную зону ёмкостью 500 МВтэ на случай экстренного производства энергии. К тому же, соль не способна создать достаточно энергии для взрыва в случае аварии, что делает солевые реакторы намного безопаснее, а экономия на средствах обеспечения безопасности сделает строительство подобных АЭС в два раза дешевле, чем АЭС с водяным охлаждением.

Если заявленные сроки будут соблюдены, то ввод АЭС на расплаве солей натрия в строй состоится в 2030 году или чуть позже. Это на два года позже первоначальных планов, но такие проекты могут задерживаться и на дольше.

К сожалению, компания не озвучила ожидаемую стоимость электричества, вырабатываемого «натриевым» реактором. Другой перспективный проект малого ядерного реактора компании NuScale в ноябре прошлого года был внезапно свёрнут в США по причине повышения проектной стоимости производимой им энергии на 50 %. Поэтому проекты NuScale будут продвигать в Эстонии, Польше, Румынии, Болгарии и на Украине. Но это уже другая история.

Honda вложилась в компактные термоядерные реакторы для зарядки электромобилей

Пока основными источниками «зелёной» электроэнергии для транспорта пытаются выступать солнечные и ветровые электростанции, но они сильно зависимы от погоды. Поддерживаемый Honda израильский стартап NT-Tao надеется в следующем десятилетии вывести на рынок транспортируемые термоядерные реакторы, которые смогут питать зарядные станции для электромобилей в районах с неразвитой наземной энергетической инфраструктурой.

 Источник изображения: NT-Tao

Источник изображения: NT-Tao

Термоядерный реактор, разрабатываемый NT-Tao, будет занимать пространство стандартного морского контейнера, но при этом выдавать до 20 МВт электроэнергии. По замыслу Honda, при подключении такой транспортируемой электростанции к зарядной станции можно одновременно снабжать электроэнергией до 1000 электромобилей. Тем более, что описываемый термоядерный реактор не должен выделять парниковых газов, и от погоды его функционирование тоже не будет зависеть.

Такая маленькая электростанция мощностью 20 МВт будет стоить от 70 до 100 млн долларов, как поясняют представители NT-Tao. Правда, получить к ним доступ клиенты смогут не ранее следующего десятилетия, когда такие энергетические установки начнут поставляться на рынок. Демонстрационные образцы должны появиться к 2029 году. Honda и другие инвесторы уже вложили в этот израильский стартап $28 млн.

По оценкам разработчиков, себестоимость 1 кВт‧ч генерируемой таким способом электроэнергии будет варьироваться от 6 до 13 американских центов. Такие источники электроэнергии можно использовать и для обособленных центров обработки данных или предприятий. Наличие мощных линий энергоснабжения поблизости в этом случае перестаёт быть определяющим положение объекта фактором.

Строительство первого малого модульного реактора в США отменено — его электричество слишком дорогое

Коммунальное предприятие Utah Associated Municipal Power Systems сообщило об отмене соглашения по строительству в США первого малого модульного реактора (SMR) по проекту компании NuScale. Отмена последовала после заявления разработчика о повышении цен на вырабатываемое SMR электричество на 53 % и о неготовности клиентов выкупать всю произведённую реакторами электроэнергию.

 Рендер внешнего вида малой АЭС будущего. Источник изображений: NuScale

Рендер внешнего вида малой АЭС будущего. Источник изображений: NuScale

Группа клиентов UAMPS соглашалась выкупать до 80 % электроэнергии, вырабатываемой малым реактором, с чем NuScale не готова была смириться. Кроме того разработчик обещал электричество по $58 за 1 МВт·ч. Теперь NuScale говорит о повышении цен на вырабатываемую малыми модульными реакторами проекта электроэнергию на 53 % или до $89. Стороны не смогли найти компромисс и расторгли договор. NuScale выплатит коммунальщикам компенсацию в размере $49,8 млн и наблюдает сейчас за падением курса собственных акций (к сегодняшним торгам они подешевели на 27 %).

Малый модульный реактор компании VOYGR NuScale первым получил лицензию на реализацию проекта SMR в США. Его собирались строить на базе Национальной лаборатории в Айдахо. Комплекс состоял бы из шести SMR мощностью 77 МВт каждый. Реактор VOYGR работает и устроен подобно типичным большим атомным реакторам деления и отличается от них только размерами. Это должно позволить изготавливать реакторы на заводе без сложных работ на месте установки. Иначе говоря, такие проекты должны быть дешевле и реализоваться быстрее.

 Макет модуля SMR в разрезе

Макет модуля SMR в разрезе

Подобный подход, о чём предупреждали эксперты, сделает вырабатываемую SMR электроэнергию дороже, а количество радиоактивного мусора увеличит в десятки раз. Как видим, первое предсказание сбылось, а второе пока под вопросом. Проверить другое предсказание могут в Европе. У NuScale уже есть договорённость построить реакторы VOYGR в большом количестве в Польше, Румынии, Болгарии и на Украине.

«Росатом» представил топливные сборки для АЭС западного образца и теперь может стать поставщиком почти для любого реактора

На конференции TopFuel 2023 в китайском городе Сиане российские специалисты представили топливную сборку для легководных реакторов западного дизайна PWR. В Китае таких реакторов большинство и Россия, как минимум, может стать поставщиком в Поднебесную не просто сырья (урана), а топливных сборок — готовой высокотехнологичной продукции, которой на самом деле нет аналогов с перспективой стать поставщиком едва ли ни для любого реактора в мире.

 Источник изображения: «Росатом»

Источник изображения: «Росатом»

По данным «Росатома», сегодня каждый шестой энергетический реактор в мире работает на топливе российского производства. С 90-х годов прошлого века компания Westinghouse начала предпринимать попытки создать собственный аналог топлива для реакторов советского и, позже, российского дизайна. Сразу зайти со стороны европейского рынка не получилось из-за ненадлежащих рабочих характеристик американского топлива, но прогресс был достигнут на Украине и сегодня, с учётом украинского опыта и благодаря санкционному отсечению России от ЕС, компания Westinghouse начала активно заключать контракты на поставку топливных сборок для АЭС на базе российских проектов в Европе.

«Росатом», со своей стороны, тоже создал основу для поставки топливных сборок для реакторов Westinghouse и подобных. Основным преимуществом российского топлива «западного образца» считается полная независимость цепочек поставок. Процесс от начала до конца проводится в России с соблюдением всех технологических требований. Но и это не всё. Представленные российскими разработчиками топливные сборки имеют усовершенствования, которые позволяют топливу «гореть» дольше и с большей эффективностью.

Иными словами, российская альтернатива позволяет реже проводить процедуру загрузки реактора и открывает возможность работать под усиленными нагрузками. Тем самым эти сборки позволяют вырабатывать более дешёвое электричество, что ещё сильнее подчёркивает статус атомной энергетики, как «зелёной».

Сборки западного образца создаются на базе топлива российского дизайна ТВС-Квадрат (TVSK). Производство сборок топлива «ТВС-Квадрат» развёрнуто на Новосибирском заводе химконцентратов (ПАО «НЗХК», предприятие Топливной компании Росатома «ТВЭЛ»). Сборки прошли полный цикл испытаний в 2020 году в реакторе PWR-900 на энергоблоке № 3 АЭС «Рингхальс» в Швеции. После отработки их направили на независимую экспертизу в научный центр Studsvik в Швеции для проведения послереакторных исследований. Осенью 2021 года центр дал положительную оценку образцам. К сборкам российского производства, отработавшим на «западном» реакторе, не было никаких претензий.

«Топливо TVSK даёт операторам АЭС уникальные преимущества: повышение производственных показателей энергоблоков на базе апробированных решений, повышение эксплуатационной безопасности — и всё это вместе с повышением устойчивости цепочек поставок топлива благодаря полностью независимым техническим решениям Росатома», — подчеркнул руководитель проекта группы программы ТВС-Квадрат АО «ТВЭЛ» Илья Ушмаров.

Серийный выпуск российских 11-метровых АЭС «Шельф-М» мощностью 10 МВт начнётся в 2032 году

Главный конструктор реакторных установок атомных станций малой мощности (АСММ) Денис Куликов сообщил, что серийное производство малых АЭС «Шельф-М» мощностью 10 МВт должно начаться с 2032 года. Одна установка «Шельф-М» в течение 60 лет обеспечит подачу электрической мощности 10 МВт и тепловой мощности 35 МВт, и таких модулей может быть несколько, что позволяет гибко масштабировать установки. Тепло и энергия придут во все медвежьи уголки страны.

 Вариант устройства реактора «Шельф-М». Источник изображения: Страна Росатом

Вариант устройства реактора «Шельф-М». Источник изображения: Страна Росатом

«В следующем году мы завершаем разработку технического проекта реакторной установки и основного оборудования энергоблока. До 2026 года должны пройти ресурсные испытания основных узлов и элементов конструкции, а к 2027-му планируется начать поставку оборудования на площадку. Работы там должны стартовать заранее, возможно, уже в следующем году», — отметил Куликов, которого процитировали РИА Новости.

Первый атомный энергоблок с реактором «Шельф-М» построят в Якутии в районе золоторудного месторождения Совиное, лицензией на разработку которого владеет Эльконский ГМК — «дочка» горнорудного дивизиона «Росатома». Согласно плану, ввод энергоблока в эксплуатацию запланирован на 2030 год. Эксплуатация блока позволит подготовиться к серийному производству модулей, выпуск которых обещает начаться с 2032 года.

Размеры «Шельф-М» составляют 11 м в длину (диаметр реактора — 8 м). Вес полностью подготовленного модуля вместе с реакторной установкой достигает 370 тонн, что допускает его перевозку с одной площадки на другую, например, на барже. Проект является одним из самых маломощных среди будущих предложений в классе малых российских АЭС. Следующей по мощности ступенькой станет АЭС на реакторе РИТМ-200Н (55 МВт). Установку создадут в якутском поселке Усть-Куйга для Кючусского золоторудного месторождения (2024 — год начало строительства, ввод — до 2030 года). Для совсем скромного потребления будет предложен реактор проекта «Елена АМ» мощностью до 400 кВт. Тем самым Россия будет иметь весь спектр реакторных установок для любых нужд.

В субботу Германия закроет три последние атомные электростанции в стране

15 апреля Германия закрывает три последние атомные электростанции в стране. Закрытие планировалось осуществить в конце 2022 года, но в связи с прекращением поставок газа по «Северным потокам» канцлер Германии Олаф Шольц единоличным решением продлил работу АЭС до 15 апреля 2023 года. С завтрашнего дня Германия формально станет страной без мирного атома, но на этом история с АЭС не закончится. Это наследие придётся хранить очень долго.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Первый в Германии план по постепенному отказу от ядерной энергетики провёл в 2002 году тогдашний министр охраны окружающей среды Германии и представитель партии «зелёных» Юрген Триттин (Jürgen Trittin). Сегодня Триттин по-прежнему является членом Бундестага от партии «зелёных».

«Да, это важный день, потому что он завершает историю, а именно историю гражданского использования ядерной энергии, — сказал он, комментируя окончательное закрытие АЭС на этой неделе. — Но это не конец ядерной энергетики в Германии, мы всё еще имеем дело с тем фактом, что нам придется безопасно хранить самые опасные в мире отходы в течение миллиона лет».

Завершающие работу реакторы, как и реакторы остановленных два года назад атомных электростанций, потребуют годы поддержки до полной физической остановки. Это означает, что пять, десять и больше лет реакторы и сопутствующее оборудование придётся поддерживать в рабочем состоянии, тратя на них энергию и ресурсы.

На АЭС останется обслуживающий персонал пусть не в полном объёме, но в достаточном количестве, которому надо будет платить заработную плату. Затем предстоит утилизация радиоактивного топлива и «фонящего» оборудования, что также потребует серьёзных затрат и, наконец, всё это придётся очень и очень долго хранить под надлежащей защитой. Проще говоря, на этом история с АЭС в Германии не заканчивается, а переходит в новую фазу. Возможно, не такую опасную, как в случае угроз со стороны действующих реакторов, но тоже требующую к себе повышенного внимания.

После 2002 года направленная на постепенный отказ от АЭС в Германии политика была смягчена. Но всё снова изменилось после аварии на АЭС «Фукусима» в 2011 году в Японии. Тогдашний канцлер Ангела Меркель (Angela Merkel) приняла решение покончить с атомной энергетикой в Германии.

Следует сказать, что после нового года и до конца марта в Германии не утихали споры по поводу продления сроков эксплуатации или остановки оставшихся АЭС. Но в конце марта министр охраны окружающей среды Германии Штеффи Лемке (Steffi Lemke) из партии «зелёных» всего несколькими словами положила конец спору, который держал страну в напряжении в течение многих лет: «Риски ядерной энергетики в конечном итоге не поддаются контролю; вот почему отказ от ядерной энергетики делает нашу страну более безопасной и позволяет избежать увеличения количества ядерных отходов».

История мирного атома в Германии началась 17 июня 1961 года. Немецкая атомная электростанция впервые подала электроэнергию в сеть на АЭС «Каль» в Баварии. Много позже в лучшие годы электросети Германии в общей сложности обслуживало 19 блоков АЭС, поставляя до трети необходимых стране мощностей. Протесты против работы АЭС в стране были в 70-е и 80-е. Всплеск активности противников атомных электростанций подстегнула авария на Чернобыльской АЭС в СССР. Однако тогдашние власти Германии оставались непреклонны в отношении атомных электростанций.

Спустя 22 596 дней с тех событий и после жарких споров последние три немецкие атомные электростанции, все ещё находящиеся в эксплуатации, будут, наконец, остановлены, подытоживает DW.

Другие европейские страны намного раньше Германии начали отказываться от ядерной энергетики. Первой была Швеция, вскоре после Чернобыля заявившая о постепенном прекращении использования атомной энергии, как и Италия, которая после этой катастрофы тоже решила закрыть две свои атомные электростанции. На сегодняшний день только Италия оставила давнее категорическое решение в силе, тогда как Швеция отменила постепенный отказ от атомной энергетики ещё в 1996 году. Сегодня она располагает шестью атомными электростанциями, которые производят около 30 % необходимой стране электроэнергии.

Другие европейские страны, например, Нидерланды и Польша планируют расширить или вообще создать новые ядерные энергетические платформы. Бельгия, в свою очередь, отложила запланированный ранее постепенный отказ от использования атомной энергии. Франция, имея 57 реакторов, всегда была ведущей страной Европы в области ядерной энергетики, и таковой она намерена оставаться в будущем. В целом, 13 из 27 стран ЕС намерены использовать атомную энергетику в ближайшие годы, причем некоторые из них расширят свои мощности.

По мнению ряда немецких профильных организаций, прекращение использования атомной энергии в Германии не является хорошей идеей, учитывая энергетический кризис. Нехватку электрической энергии от остановленных АЭС компенсируют запуском электростанций на ископаемом топливе, что в свете ненадёжности поставок ресурсов, климатической политики и дороговизны энергоносителей «не может не вызывать доверия», как выразились в KernD. «Ни в какой энергии, кроме атомной, нет смысла, если необходимо наращивать энергетику», — сказали в организации.

По данным Международного агентства по атомной энергии (МАГАТЭ), в настоящее время в мире действуют 422 ядерных реактора, средний возраст которых составляет около 31 года. В то же время МАГАТЭ утверждает, что нет никаких признаков того, что ядерная энергетика переживает ренессанс: «Пик производства атомной энергии пришелся на 1996 год — 17,5 %, а в 2021 году этот показатель упал ниже 10 % — самый низкий за последние четыре десятилетия».

И всё же, Китай, Россия и Индия, в частности, планируют строительство новых атомных электростанций. Китай хочет построить еще 47 станций и уже производит больше ядерной энергии, чем Франция. Но АЭС будут появляться не только в развивающихся странах. Даже Япония хочет вернуться к использованию атомной энергии, несмотря на землетрясение и цунами 2011 года, которое привело к катастрофе на АЭС «Фукусима» и проблемах на других АЭС.

В последние годы некоторые реакторы в Японии были возвращены в строй. Теперь японское правительство приняло решение построить новые реакторы и позволить старым работать до 70 лет. «Мы должны полностью использовать ядерную энергию», — недавно заявил как отрезал премьер-министр Фумио Кисида (Fumio Kishida). Опросы показывают, что, несмотря на длительный период сопротивления, поддержка использования АЭС среди населения Японии постепенно растет. Но для Германии в этом вопросе поставлена точка. По крайней мере, с позиций действующей власти.

Остановка всех АЭС в США заставит вернуться к сжиганию угля и газа, что приведёт к тысячам смертей

Специалисты Массачусетского технологического института провели углублённое моделирование сценариев загрязнения воздуха в США и его влияния на здоровье и жизни граждан. Рассматривались три сценария работы энергосистемы страны: как есть, с расширенным использованием возобновляемых источников в паре с АЭС и без атомных электростанций, но с ТЭЦ на угле и газе, а также с возобновляемыми источниками. Оказалось, что полный отказ от АЭС приведёт к загрязнению воздуха и погубит тысячи жизней.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Сегодня США имеют больше всего активных ядерных реакторов в мире: 92 штуки. АЭС вырабатывают около 20 % электрической энергии в стране. Проблема в том, что подавляющему большинству реакторов свыше 50 лет и их вскоре надо либо останавливать, либо сертифицировать для продления сроков эксплуатации. Сейчас это вопрос острой дискуссии в обществе и в политике. Учёные из MIT решили с цифрами в руках оценить тот или иной выбор и сделать это наиболее наглядным образом: как изменения повлияют на здоровье и жизни людей.

Компенсировать нехватку электричества в случае полной остановки АЭС можно только за счёт сжигания угля, нефти или газа. Это приведёт к дополнительным выбросам парниковых газов и, в целом, к загрязнению атмосферы. Загрязнение и изменение климата приведёт к 5200 преждевременным смертям каждый год с момента полного отказа от атомной энергетики. Особенно это коснётся Восточного побережья, где сейчас много АЭС и работу которых придётся заменять электростанциями на ископаемом топливе. Остроту проблеме придаёт тот факт, что вблизи электростанций на ископаемом топливе в основном проживают афроамериканцы и умирать они начнут первыми.

Если стране удастся к 2030 году достичь ранее поставленных климатических целей и, в частности, довести выработку энергии из возобновляемых источников до значительных величин, то остановка АЭС хотя и ухудшит ситуацию, то не так сильно и не во всех регионах страны. В таком случае уровень преждевременных смертей в отдельных районах США будет достигать 260 человек в год. Эти смерти по-прежнему будут обусловлены электростанциями на ископаемом топливе, которые будут компенсировать нехватку электричества с закрытием АЭС.

«В дебатах о сохранении атомных электростанций, качество воздуха не было в центре внимания, — говорят авторы исследования. — Мы обнаружили, что загрязнение воздуха от электростанций, работающих на ископаемом топливе, настолько пагубно, что всё, что его увеличивает, например, остановка атомной станции, будет иметь существенные последствия, причем для некоторых людей в большей степени, чем для других».

В США запущена первая ферма по добыче биткоинов с питанием от ядерного реактора

Специализирующаяся на добыче биткоинов американская компания TeraWulf первой в стране запустила майнинговую ферму, на 100 % работающую от атомной энергии. Речь идёт об объекте Nautilus Cryptomine в штате Пенсильвания — ферма насчитывает 8 тыс. майнеров. Общая мощность этого совместного с компанией Cumulus Coin объекта составляет 200 МВт.

 Источник изображения: terawulf.com

Источник изображения: terawulf.com

Доля TeraWulf на объект пока составляет 50 МВт — в полной мере она будет задействована в мае, а на начальном этапе компания запустила 8 тыс. майнеров, дающих суммарную производительность около 1 Эхеш/с. В ближайшие недели TeraWulf развернёт на Nautilus ещё 8 тыс. устройств, чтобы выйти на показатель в 1,9 Эхеш/с. В перспективе компания также собирается увеличить свою долю на объекте ещё на 50 МВт.

Майнинг биткоина с прямым питанием от АЭС чрезвычайно выгоден, поскольку атомная энергетика предлагает один из самых низких на рынке тарифов на электричество, сообщил глава и председатель совета директоров TeraWulf Пол Прагер (Paul Prager). В ближайшие пять лет стоимость 1 кВт·ч для компании составит всего $0,02. Компания располагает ещё одним объектом под названием Lake Mariner в Нью-Йорке — она владеет им единолично, и на этом объекте скоро будет введён в эксплуатацию новый корпус, в результате чего потребляемая мощность возрастёт до 110 МВт. В общей сложности в начале II квартале у TeraWulf будут работать 50 тыс. майнеров, потребляющих 160 МВт с общей производительностью 5,5 Эхеш/с.

Первый построенный в США за 30 лет атомный реактор достиг начальной критичности — реакция деления стала самоподдерживающейся

Компания Georgia Power сообщила, что реактор проекта AP1000 компании Westinghouse на площадке АЭС Vogtle в штате Джорджия запустил самоподдерживающуюся реакцию ядерного деления. Это первый построенный за 30 лет в США ядерный реактор и первый по проекту AP1000. Ввод энергоблока в эксплуатацию ожидается к маю или июню этого года после комплексных испытаний реактора и повышения нагрузки до номинального значения 1250 МВт.

 Источник изображения: Georgia Power

Энергоблок Vogtle 4. Источник изображения: Georgia Power

Строительство двух реакторов AP1000 поколения III+ с полностью пассивными системами безопасности и модульной конструкцией началось в 2013 году. Вскоре с реализацией проекта начались трудности, что в итоге заставило компанию Toshiba оформить банкротство дочерней компании Westinghouse и искать деньги, чтобы не обанкротиться самой. Как следствие этого процесса подразделение по производству флеш-памяти Toshiba было продано консорциуму сторонних компаний.

Достройкой реактора Vogtle 3 занялись местные компании Southern Nuclear и Georgia Power, с чем они справились. До этого четыре реактора по проекту AP1000 смогли построить в Китае местные компании. Юридически продажа Westinghouse корпорациям Cameco и Brookfield Renewable Partners должна быть закрыта до конца текущего года. Toshiba купила Westinghouse в 2006 году.

На площадке АЭС Vogtle строится ещё один реактор AP1000 — Vogtle 4. Для Westinghouse и её новых хозяев продолжение работы и запуск второго модуля важны в дальнейшей перспективе. Представители Westinghouse уже заключили предварительную договорённость о строительстве до шести реакторов AP1000 в Польше. Аналогичные договорённости готовятся с властями Болгарии и Украины. Причём для украинских АЭС Westinghouse производит топливные сборки, что откроет перед ней возможность поставлять топливо на существующие атомные электростанции, построенные по советским и российским проектам.

В отличие от Европы США не собираются отказываться от мирного атома и по мере сил восстанавливают пробелы, сделанные предыдущими властями в отношении поддержки атомной индустрии. Достижение реактором Vogtle 3 стадии первой критичности подтверждает, что многое сохранено. И, кстати, если верить слухам, специалисты Westinghouse сейчас помогают французам достроить атомные реакторы во Франции. Местная компания EDF, как выясняется на практике, тоже растеряла компетенции, но это уже другая история.

Rolls-Royce тоже пригласили построить малый модульный реактор в Европе — начнут с Польши

Список компаний, выбранных для строительства на территории Европейского союза малых модульных атомных реакторов, пополнился британской Rolls-Royce. Ранее для аналогичных программ были выбраны компании NuScale и GE Hitachi. Компания Rolls-Royce подписала Меморандум о взаимопонимании с польской компанией Industria, тогда как NuScale рассчитывает начать покорение Европы с Румынии, а GE Hitachi — с Эстонии.

 Источник изображения: Rolls-Royce

Источник изображения: Rolls-Royce

Следует сказать, что основная идея государственной компании Industria, которая является частью открытого акционерного общества Industrial Development Agency JSC (IDA), заключается в создании сети атомных электростанций для производства «низкоуглеродного» водорода. Будущий кластер, помимо обеспечения польских потребителей электроэнергией, будет производить от 50 тыс. т водорода в год.

Первый типовой проект малого модульного реактора Rolls-Royce предусматривает энергетический объект мощностью 470 МВтэ. Это уменьшенная копия водяного реактора под давлением, что облегчает проектные работы и сертификацию, но ведёт к кратному увеличению объёмов ядерных отходов (мощность реактора падает на порядок, а объём материалов для реактора уменьшается не столь сильно). В Великобритании первый реактор по данному проекту обещают ввести в эксплуатацию в 2029 году, но разрешение на строительство будут получать не раньше середины 2024 года.

Согласно предварительной договорённости с Industria, первый в Польше кластер из реакторов Rolls-Royce может включать до трёх установок. Также рассматривается возможность заменить более 8 ГВт мощностей угольных электростанций в южной Польше на ММР Rolls-Royce с 2030 по 2040 годы.

Это не единственный атомный проект для Польши. Страна находится в начале процесса широкомасштабного перехода на атомную энергию в рамках планов по декарбонизации. Так, в прошлом году правительство страны выбрало реакторы AP1000 компании Westinghouse для первой части плана по строительству к 2040 году шести полномасштабных реакторов мощностью до 9 ГВт, а южнокорейская Korea Hydro & Nuclear Power согласовала отдельный план строительства АЭС в Патнове с польскими компаниями ZE PAK и Polska Grupa Energetyczna.

Не менее амбициозные планы по строительству в Польше малых модульных реакторов. В частности, неделей ранее компания PKN Orlen заявила, что готовится объявить места для размещения до 79 реакторов SMR BWRX-300 компании GE Hitachi Nuclear Energy. Также в прошлом месяце французская EDF подписала соглашение с компанией Respect Energy о разработке проектов ядерной энергетики на основе технологии Nuward SMR.

В июле 2022 года производитель меди и серебра компания KGHM Polska Miedz SA подала заявку в Национальное агентство по атомной энергии Польши об оценке электростанции VOYGR SMR компании NuScale. KGHM заявляет, что её целью является развертывание первой электростанции NuScale VOYGR SMR в Польше уже в 2029 году. Черты будущего энергетики Польши и значительной части Европейского союза меняются так быстро и так сильно, что остаётся только удивляться, о чём все думали раньше?

Hitachi построит в Эстонии свой малый модульный реактор — это будет первая АЭС в стране

Эстонская компания Fermi Energia выбрала малый модульный реактор BWRX-300 компании GE Hitachi для первой в стране атомной электростанции. Реактор станет для Эстонии и зарубежных клиентов источником «чистого» электричества мощностью 300 МВтэ. Впрочем, для начала строительства придётся серьёзно изменить законодательство страны в области атомного регулирования, что должно произойти в кратчайшие сроки.

 Малый модульный реактор в представлении художника. Источник изображения: GE Hitachi

Малый модульный реактор BWRX-300 в представлении художника. Источник изображения: GE Hitachi

В сентябре 2022 года эстонская Fermi Energia объявила конкурс на проекты малых модульных реакторов, к главным преимуществам которых относятся сравнительно быстрое строительство, относительно небольшие затраты и повышенная безопасность эксплуатации. На конкурс были представлены проекты установок GE Hitachi, NuScale и Rolls-Royce. Заявки подавались к декабрю с полной технической документацией, необходимой для оценки стоимости строительства. По словам компании, при выборе технологии критериями были технологическая зрелость, создание эталонной установки, экономическая конкурентоспособность и участие эстонских предприятий в цепочке поставок.

На днях Fermi Energia сообщила о сделанном выборе. В качестве рабочего проекта выбран реактор BWRX-300 GE Hitachi. На этот выбор самое решительное влияние оказало то, что аналогичная установка будет построена в Канаде. Точнее проект BWRX-300 принят канадским регулятором для лицензирования и вскоре может начаться подготовка к строительству. Всё идёт к тому, что это будет вообще первый малый модульный реактор, построенный на североамериканском континенте. Это пока ещё не рабочая установка (как требовали условия контракта), но у остальных разработчиков нет даже этого. Реактор NuScale прошёл ряд важных этапов в получении лицензии, но заявка на начало строительства в США будет подаваться не раньше первого квартала 2024 года.

Другим важным преимуществом реактора BWRX-300 необходимо считать то, что он использует традиционное топливо, тогда как для работы реактора NuScale потребуется топливо на основе металлического высокопробного низкообогащённого уранового топлива (HALEU) с содержанием изотопа урана-235 на уровне 20 % (в обычном топливе его не более 5 %). В достаточном количестве топливо HALEU есть только у России и эстонская компания, вероятно, посчитала такую зависимость лишней.

 Реактор BWRX-300

Реактор BWRX-300

Наконец, принцип работы реактора BWRX-300 опирается на давно используемую в больших установках схему кипящих водо-водяных реакторов, у которых вода превращается в перегретый пар в активной зоне. Это всё многократно проверено на практике и очень надёжно, но при этом за счёт масштабирования в меньшую сторону приведёт к кратному увеличению радиоактивных отходов. Пожалуй, это единственный серьёзный минус у ММР, построенным по классическим схемам.

Выбор реактора BWRX-300 для реализации в Эстонии запускает процедуру разработки детального проекта для составления сметы. Дальше в дело должны вступить законодатели, чтобы создать правовую основу для реализации проекта. После этого будет запущен поиск и сертификация мест для строительства реактора. К моменту запуска стройки в Эстонии проект BWRX-300 должен во всю развиваться в Канаде, на что эстонцы сильно рассчитывают, так как в мире нет ещё ни одного такого реактора и чей-то опыт поможет избежать многих ошибок на месте. В конечном итоге ММР BWRX-300 компания Fermi Energia рассчитывает запустить к Рождеству 2031 года. Для GE Hitachi, которая надеется подмять под себя европейский атомный рынок, это будет делом чести.

Первый в Северной Америке малый модульный реактор готова построить Канада, а не США

Компания GE Hitachi Nuclear Energy (GEH) сообщила, что подписала контракт на строительство первого в Северной Америке коммерческого малого модульного реактора (ММР). Установка BWRX-300 будет построена совместно с канадскими компаниями Ontario Power Generation (OPG), SNC-Lavalin и Aecon рядом с АЭС «Дарлингтон» на северном берегу озера Онтарио в Кларингтоне, что в Канаде.

 Нажмите, чтобы увеличить. Источник изображения: GE Hitachi Nuclear Energy

Нажмите, чтобы увеличить. Источник изображения: GE Hitachi Nuclear Energy

Реактор BWRX-300 может начать работу на год–два раньше малого модульного реактора компании NuScale, которая стремится первой построить ММР в США. Предполагается, что на площадке Ontario Power Generation реактор BWRX-300 будет запущен в 2028 году, тогда как запуск реактора NuScale на площадке в Национальной лаборатории Айдахо отодвигается до 2029 года или на более позднее время.

Будет интересно проследить, если Канада и GE Hitachi перехватят инициативу. И GE Hitachi, и NuScale стремятся стать первыми компаниями на рынке ММР и за североамериканскими проектами последуют другие, включая европейские.

Реактор BWRX-300 относится к десятому поколению кипящих водо-водяных реакторов (BWR, boiling water reactor). Заявленная электрическая мощность установки достигает 300 МВтэ. К преимуществам BWRX-300 можно отнести простую конструкцию с естественной циркуляцией воды и пассивными системами безопасности, а также использование комбинаций обычного топлива, а не топлива типа HALEU, без которого не будет работать реактор NuScale и другие перспективные атомные реакторы.

За основу BWRX-300 был взят реактор ESBWR (Economic Simplified Boiling Water Reactor), ранее сертифицированный американским регулятором NRC. Тем самым получение сертификатов и лицензии для BWRX-300 шло по проторенному пути. Американский и канадский ядерные регуляторы продолжают координировать действия по реактору BWRX-300, что, к примеру, облегчит строительство такой же установки в США, а она рассматривается в штате Теннеси.

По контракту с канадскими компаниями GEH предоставит проект реактора, что будет включать ряд работ по проекту, в том числе проектирование, поддержку инженерного лицензирования, строительство, испытания, обучение и ввод в эксплуатацию. Наработки помогут продвинуть реакторы GEH в другие страны. Предварительные договорённости подписаны с компаниями из Польши и Великобритании. Для Hitachi это будет первый заказ на реактор с 2008 года. Важно будет запустить этот проект по возможности в срок и без превышения сметы, чего давно не наблюдалось при строительстве полномасштабных АЭС.


window-new
Soft
Hard
Тренды 🔥
Из-за ИИ выбросы парниковых газов у Google выросли на 48 % за пять лет 2 ч.
Dragon Age: The Veilguard позволит погрузиться в бесконечный кошмар и почувствовать себя богом — подробности настроек сложности 3 ч.
Игрок запустил петицию с требованием к Ubisoft отменить Assassin's Creed Shadows — её подписали уже 30 тысяч человек 4 ч.
Rockstar добавила в GTA Online частичку GTA VI 6 ч.
Neon White, The Case of the Golden Idol, новая игра от создателя Hohokum и не только: Microsoft раскрыла первую волну июльских новинок в Game Pass 7 ч.
Meta изменила подход к маркировке изображений, над которыми поработал ИИ 8 ч.
Еженедельный чарт Steam: Forza Horizon 4 ворвалась в тройку лучших после объявления о снятии с продажи 8 ч.
Чтобы смотреть Netflix без рекламы, подписчикам придётся платить больше 8 ч.
XIX ежегодная конференция «СПО в высшей школе»: чему учить студентов ИТ-специальностей и как сэкономить на виртуализации 10 ч.
В России стали чаще обнаруживать и блокировать фишинговые сайты 13 ч.