Опрос
|
реклама
Быстрый переход
Китай заявил о разработке самого мощного детонационного двигателя для гиперзвуковых полётов
27.12.2023 [13:32],
Геннадий Детинич
В китайском рецензируемом журнале Propulsion Technology опубликована статья о проекте комбинированного детонационного ротационного двигателя для гиперзвуковых полётов. Согласно моделированию, двигатель сможет разгонять воздушное средство до скорости 16 Маха. Это самая смелая на сегодня заявка в сфере гиперзвуковых полётов, реализация которой может не задержаться. За последние годы Китай много говорит о разработке двигателей для гиперзвуковых полётов. Но это не только разговоры. Достаточно много становится известно о практических шагах. В сентябре этого года, например, в небо поднимался беспилотник с детонационным ротационным двигателем. Также сообщается о многочисленных испытаниях прототипов в аэродинамических трубах. Есть даже экзотические случаи, как гиперзвуковые двигатели на угле (на угольной пыли, точнее). Наверняка о многом не сообщается по соображениям секретности, но отрицать движение вперёд тоже нельзя. Новые разработки быстро доводят до прототипов и либо отбрасывают, либо продолжают доводить до ума. Идея нового комбинированного детонационного ротационного двигателя заключается в том, что до достижения скорости 7 Маха двигатель работает на принципе создания вращающегося фронта волны детонирующего топлива. Такой двигатель способен работать в большом диапазоне мощностей и сможет поднять самолёт с взлётной полосы и также позволить приземлиться на полосу с малой дозвуковой скоростью. На скорости выше 7 Маха скорость набегающего воздуха начинает мешать работе двигателя. Топливо перестаёт нагреваться, и детонация может сорваться. Китайские инженеры предложили добавить к задней части двигателя небольшой кольцевой блок с наклонной детонационной камерой. Тогда на скорости свыше 7 Маха вращательная детонация прекратится, и начнёт работать линейная и, фактически, прямоточная. Разработчики из Пекинского института энергетического машиностроения признают, что моменты перехода от одного вида детонации к другому остаются сложным процессом, когда двигатель может работать неустойчиво. По крайней мере, об этом говорит моделирование. Дальнейшая работа и испытания в аэродинамической трубе помогут добиться оптимальной конструкции рабочих камер и перейти к созданию масштабного прототипа. Следует сказать, что примерно по такому же пути пошла американская компания GE Aerospace. Но она после стадии разгона на принципе вращательной детонации переходит на прямоточный ракетный реактивный двигатель. В этом есть плюсы и минусы. КПД топлива падает, и растёт его расход, хотя устойчивость перехода между режимами будет выше. Если китайцам получится совместить ротационный детонационный двигатель и линейный детонационный двигатель, то КПД такого двигателя во всех режимах полёта будет приближаться к 80 %. Искусственный интеллект помог Китаю совершить рывок в области рельсотронов
09.12.2023 [11:11],
Геннадий Детинич
Китайские учёные совершили крупный технологический скачок в сфере рельсового оружия. Традиционно рельсотроны подвержены высочайшему износу направляющих для снаряда, что снижает количество выстрелов, возможных без ремонта орудия, до десятков и даже меньше. Китайская разработка выдержала 120 залпов без ремонта и снижения точности, что приближает её по обслуживанию к современной ствольной артиллерии, и помог в этом искусственный интеллект. ИИ в составе рельсового орудия управлял параметрами системы и режимами выстрела. Снаряд в стволе рельсотрона разгоняется по токопроводящим направляющим. Точное управление силой тока в разные моменты процесса требует невообразимой скорости принятия решений в зависимости от множества текущих характеристик системы. Китайский рельсотрон снабжён 100 тыс. датчиками, что в 10 раз превышает количество сенсоров на современном самолёте. Поэтому выстрела и порчи оборудования не произойдёт, если что-то отклонится от нормы. Искусственный интеллект оказался способен за миллисекунды анализировать показания всех датчиков и успевать принимать решение. Благодаря этому сбои в процессе работы орудия возникали всё реже и реже. За последние 50 залпов в 120-залповой серии, орудие ни разу не отказало. При этом снаряды вылетали из ствола со скоростью 2 км/с, что примерно соответствует 6 Махам. С такой скоростью можно прицельно поражать цели на дальности до 200 км. «О подобной работе никогда раньше публично не сообщалось, — заявила команда Национальной лаборатории электромагнитной энергии при Военно-морском инженерном университете в статье, опубликованной 10 ноября. — Военные машины медленно переходят от химической энергии к электромагнитной ... [и] непрерывная скорость стрельбы является решающим показателем боевой эффективности систем электромагнитного рельсового запуска». Рельсотроны не остались без внимания военных инженеров из других стран. Судя по всему, больше всего внимания им уделили в США. Если верить китайским источникам, ещё в начале 2010-х американцы потратили четыре года на отстрел 1000 испытательных снарядов. К 2018 году стояла цель создать систему, способную произвести 1000 выстрелов без обслуживания. Сделать это не удалось, и в 2021 году проект был закрыт. В Европе проект рельсотрона официально утверждён к разработке в 2020 году. Занимается им Европейское оборонное агентство (EDA) и Французско-немецкий научно-исследовательский институт Сен-Луи (ISL). В проекте участвуют пять европейских стран. Демонстратор должен быть создан к 2028 году. Кодовое имя проекта PILUM. Также разрабатывают рельсотрон японцы. Массогабаритные испытания морского комплекса прошли этим летом и, как сообщается, успешно. Интересно отметить, что китайские учёные рассматривают гражданские варианты использования рельсовых технологий. Это могут быть левитирующие поезда в вакуумных трубах (маглевы), которые будут разгоняться до 1000 км/ч, а также электромагнитные ускорители для запуска полезной нагрузки в космос. Капля воды создала искровой разряд в 1200 вольт в эксперименте китайских учёных — это разделило воду на водород и кислород
28.11.2023 [14:02],
Геннадий Детинич
В середине ноября в журнале Science Advances вышла статья исследователей Нанкинского университета аэронавтики и астронавтики, в которой сказано о достижении рекордного уровня разряда от падающей капли воды. Упавшая на специально подготовленную поверхность с высоты 25 см капля вызвала искровой разряд 1200 В, что примерно в четыре раза выше прежнего рекорда. Этой энергии хватило на расщепление воды на кислород и водород. В ранее проводимых экспериментах выходное напряжение насыщения не превышало 350 В. Заряд возникает в процессе падения капли с высоты на наклонную поверхность. При соприкосновении капли с поверхностью возникает двойной электрический слой, делая всю систему похожей на суперконденсатор. Величина напряжения насыщения зависит от скорости скатывания капли по поверхности и от её растекания по поверхности. Как заявили учёные, приблизиться к теоретически возможному пределу выходного напряжения мешало недостаточное понимание физики процесса. В ходе эксперимента исследователи снимали падение капли на наклонную поверхность высокоскоростной камерой и соотносили эти данные с результатами измерений электрических характеристик процесса. Позже на основе полученных данных была построена убедительная модель. Работа помогла приблизиться к теоретическому пределу выходного напряжения в результате процесса. Номинально величина искрового разряда достигла значения 1200 В. Этого оказалось достаточно, чтобы капля обычной водопроводной воды при нормальном атмосферном давлении и температуре, падающая на подготовленную наклонную поверхность, вызывала искровой разряд достаточной для ионизации газа силы. В своём опыте учёные, например, показали процессы ионизации гелия, а также разложения воды на кислород и водород, что может найти применение в передовых установках по добыче водорода. В Китае создали самый мощный в мире термоакустический генератор Стирлинга — для космоса и подводного флота
12.11.2023 [07:19],
Геннадий Детинич
Китайские источники сообщили, что учёные страны создали самый мощный в мире термоакустический генератор Стирлинга. Работающая практически бесшумно компактная установка длиной 2 м выдаёт 100 кВт электрической энергии. Патент на устройство в своё время получило NASA (LEW-TOPS-80), но агентство всё ещё не создало рабочую установку. Такие генераторы идеальны для использования в космосе и в подводных лодках. Китай рассматривает обе сферы применения. Представленный термоакустический генератор Стирлинга создали в Техническом институте физики и химии (TIPC) при Китайской академии наук (CAS). Его длина достигает 2 м при максимальном диаметре 0,63 м. Своим внешним видом генератор похож на гантелю. В ходе проведённой недавно демонстрации прототип выдал революционную мощность в 102 кВт при температуре источника тепла 530 °C. Это первый в мире случай, когда данный тип генератора преодолел порог в 100 кВт, что является важной вехой для его практического применения. «В настоящее время эффективность термоэлектрического преобразования составляет около 28 %, а при использовании более горячего теплоносителя с температурой 600 градусов эффективность может достигать 34 %», — заявили разработчики. Тем самым перспективная установка приблизилась по КПД к классическим паровым турбинам с сохранением массы собственных достоинств — это почти бесшумная работа, использование абсолютно любого источника тепла, простота конструкции и малое количество подвижных частей. Инновационная система состоит из термоакустического двигателя Стирлинга и линейного двигателя, заключенных в жёсткую оболочку (что служит дополнительной звукоизоляцией). Двигатель преобразует тепло в звуковые волны, которые, резонируя, образуют бегущую звуковую волну. Звуковая волна приводит в движение поршень линейного генератора, вырабатывающего переменный ток. «Рабочей средой служит гелий под высоким давлением 15 Мпа (150 атмосфер), а отсутствие механических частей, нуждающихся в смазке, означает, что срок службы генератора может превысить десятилетие», — поясняют разработки. — Он работает тихо и эффективно, может использовать различные виды тепла, включая солнечную энергию, отработанное тепло и биомассу». Добавим, Китай уже испытывает двигатели Стирлинга с линейными генераторами в космосе. Так, в апреле этого года сообщалось, что один из таких прототипов был испытан на станции «Тяньгун», что стало первым в мире испытанием двигателя Стирлинга на орбите. В России созданы более классические варианты генераторов на двигателях Стирлинга. Например, дочерняя организации НПО «Наука» — «Наука-Энерготех» — разработала 1-кВт свободно-поршневой генератор «Эвогресс» для автономного электропитания в удалённых локациях, но это уже другая история. Китайские учёные приблизились к созданию долговечных, ёмких и недорогих литий-серных аккумуляторов
01.10.2023 [01:01],
Алексей Разин
Специалисты разных стран мира ведут поиск новых химических составов аккумуляторов, которые позволили бы улучшить потребительские качества тяговых батарей электромобилей сразу по нескольким критериям. Китайским учёным удалось усовершенствовать состав литий-серных батарей, увеличив их эксплуатационный ресурс без ущерба для остальных характеристик. Как поясняет Nikkei Asian Review, в литий-серных аккумуляторах катоды изготавливаются из серы, что позволяет снизить себестоимость производства и увеличить ёмкость аккумулятора в два раза по сравнению с литийионными аналогами. При этом существовавшие до этого прототипы литий-серных батарей страдали от низкого эксплуатационного ресурса, поскольку выдерживали лишь ограниченное количество циклов зарядки и разрядки. Версии с жидким и твёрдым электролитом в равной мере с трудом преодолевали тысячу таких циклов. По данным первоисточника, представителям Китайской академии наук удалось создать литий-серный аккумулятор, способный после 1400 циклов зарядки и разрядки сохранить до 70 % своей изначальной ёмкости. Данное открытие приближает литий-серные аккумуляторы к коммерческой пригодности. Новшество, предложенное китайскими исследователями, заключается в сочетании угольных нанотрубок с серой, поскольку такая структура способствует лучшему перемещению в ней ионов и электронов, ибо чистая сера плохо проводит электричество. Данное открытие должно приблизить создание практичных высокоэффективных литий-серных батарей с твердым электролитом. Китай привезёт на Землю грунт с обратной стороны Луны — уникальная миссия пройдёт в 2024 году
29.09.2023 [16:22],
Геннадий Детинич
Сегодня на сайте Китайского национального космического управления (CNSA) появилось объявление, в котором сказано о запуске в 2024 году миссии «Чанъэ-6» по доставке образцов грунта с обратной стороны Луны. Образцы породы с этой части спутника ещё не попадали в руки учёных, что позволяет сохранять интригу. Автоматическая станция «Чанъэ-6» должна опуститься на поверхность Луны в южной части кратера Аполлон в бассейне Южный полюс (Эйткен). Аппарат окажется в гигантском древнем ударном кратере, что потенциально может обеспечить доступ к образцам пород, выброшенным из недр Луны. Забор грунта с поверхности и с помощью бура из глубины должен обеспечить сбор около двух килограммов образцов. Они могут дать бесценные данные о строении Луны и её геологической истории, включая данные о сейсмической активности. Повышенная сложность миссии обусловлена тем, что радиосвязь с обратной стороной Луны напрямую с Земли невозможна. Для обеспечения бесперебойной связи со спускаемым аппаратом на орбиту Луны (дальнюю ретроградную или наклонную высокоэллиптическую) сначала будет выведен спутник-ретранслятор «Цюэцяо-2» (Queqiao-2). В прошлом подобная схема использовалась для управления миссией «Чанъэ-4», когда Китай совершил первую в истории человечества посадку на обратной стороне Луны. Образцы грунта с обращённой к Земле стороны Луны Китай уже вернул на Землю в ходе миссии «Чанъэ-5». Фактически «Чанъэ-6» является дублёром комплекса «Чанъэ-5» и будет работать по похожей схеме за исключением, конечно же, что миссия забора образцов на обратной стороне Луны будет намного сложнее. Ранее запуск ракеты-носителя «Чанчжэн-5» (Long March 5) с четырьмя космическими аппаратами миссии «Чанъэ-6» на борту ожидался в мае 2024 года. В сегодняшнем сообщении этой информации нет. Ожидаемая продолжительность миссии составит 53 дня, что более чем в два раза дольше, чем в случае возвращения образцов грунта с видимой стороны Луны, которая длилась 22 суток. В Китае испытали первый в мире беспилотник на ротационном детонационном двигателе
26.09.2023 [10:01],
Геннадий Детинич
Китай перешёл от стендовых испытаний ротационных детонационных двигателей к тестированию их на летающих прототипах. Это позволит создать самые разнообразные гиперзвуковые воздушные транспортные средства, от самолётов до ракет, которые к тому же будут потреблять меньше топлива. По сообщению издания South China Morning Post, двигатель FB-1 Rotating Detonation Engine (FB-1 RDE) был разработан совместно Научно-исследовательским институтом промышленных технологий Чунцинского университета и частной компанией Thrust-to-Weight Ratio Engine (TWR), расположенной в Шэньчжэне. Испытания на беспилотном самолёте длиной 5 метров прошли на неизвестном аэродроме в провинции Ганьсу. В местных социальных сетях распространяется фотография зажжённого двигателя во время рулёжки беспилотника по полосе. Был ли двигатель FB-1 RDE испытан в полёте, не уточняется. Но сам факт создания прототипа двигателя, который разместили на летающем средстве — это настоящее событие. До сих пор было известно только о стендовых испытаниях в крайне громоздких декорациях. Россия сообщала об испытаниях импульсных детонационных ракетных двигателей ещё в 2016 году. Китай приступил к испытаниям детонационных двигателей около пяти лет назад, а в США добились определённого успеха в испытаниях подобных двигателей в начале этого года. За столь короткое время Китай успел очень и очень удивить, начав испытывать детонационный двигатель на угле. Точнее, на смеси угольной пыли и этилена. Удивил он и сейчас, первым заявив о начале лётных испытаний воздушного судна с детонационным двигателем на борту. Топливо в детонационном двигателе подаётся либо непрерывно, либо порциями. Российские институты, например, говорили о разработке импульсных детонационных ракетных двигателей. В США и Китае работают над ротационными детонационными двигателями, которые удобны для постоянной подачи топлива, а его детонация порождает кольцевую и закрученную как торнадо взрывную волну, фронт которой начинает распространяться в двигателе со скоростью, значительно превышающей скорость газов, образующихся при сгорании топлива в обычных реактивных двигателях. По оценкам специалистов, детонационные двигатели смогут также экономить до 30 % топлива, развивая при этом гиперзвуковые скорости. Их другим важным преимуществом также считается способностью гибко управлять тягой от нуля до максимального уровня, что не является сильной стороной реактивных двигателей. Наконец, ротационные детонационные двигатели обещают оказаться проще в эксплуатации и обслуживании. «Это событие стало важным шагом в реализации комплексной стратегии TWR по развитию технологий детонационных двигателей и полётов с использованием детонационных двигателей», — сообщила компания TWR в сети WeChat. Ранее в этом году TWR сообщала, что её ротационный двигатель достиг тяги в 1000 Н. В производство он должен быть запущен в течение двух лет. Грубо говоря, это тяга в 100 кг, что не позволяет говорить о каких-либо тяжёлых воздушных аппаратах, но для беспилотников этого будет достаточно. В Китае разработали технологию, которая приведёт к 1-нм чипам — 300-мм пластины научились покрывать атомарно тонкими плёнками
29.08.2023 [09:52],
Геннадий Детинич
Китайские учёные сообщили о создании технологии массового производства подложек с атомарно тонкими полупроводниковыми слоями. Новая технология масштабируется до производства 12-дюймовых (300-мм) подложек — самых массовых, продуктивных и наибольших по диаметру пластин для производства чипов. С такими пластинами транзисторы с затвором размером 1 нм и меньше станут реальностью, что продлит действие закона Мура и выведет электронику на новый уровень. Современные технологии наращивания слоёв на подложках работают по принципу осаждения материала из точки распыления на поверхность. Для нанесения плёнок толщиной в один атом или около того на крупные пластины эта технология не предназначена. С её помощью можно инициировать рост равномерной по толщине плёнки только на небольшие пластины — примерно до 2 дюймов в диаметре. Для пластин большего диаметра и, тем более, для 300-мм подложек этот метод не годится. В интервью изданию South China Morning Post профессор Пекинского университета Лю Кайхуи (Liu Kaihui) сообщил, что его группа разработала технологию производства атомарно тонких слоёв на любых подложках вплоть до 300-мм. В основе технологии лежит контактный метод выращивания плёнки с поверхности на поверхность. Активный материал входит в контакт с подложкой сразу по всей её поверхности, давая старт для роста плёнки равномерно во всех её точках. В зависимости от типа активного материала могут быть выращены плёнки нужного состава и даже множество плёнок друг на друге, если это потребуется. Кроме того, учёные разработали проект установки для выращивания атомарно тонких плёнок в массовых объёмах. Согласно расчётам, одна такая установка может выпускать до 10 тыс. 300-мм подложек в год. Эта же технология подходит для покрытия подложек графеном, что позволит, наконец, внедрить этот интересный материал в массовое производство чипов. Следует сказать, что учёные заглянули далеко вперёд. Сегодня 2D-материалы (толщиной в 1 атом) только исследуются на предмет использования в структурах 2D-транзисторов и в других качествах. До массового производства подобных решений ещё очень далеко, и предстоит провести много научной работы, пока она не воплотится в серийной продукции. Но это важнейшее направление, которое позволит совершить прорыв в производстве электроники и китайские производители внимательно следят за успехами своих учёных. Более 1000 американских учёных выступили против разрыва научного сотрудничества США с Китаем
28.08.2023 [15:27],
Алексей Разин
Соглашение о научно-техническом сотрудничестве между США и Китаем было подписано ещё в 1979 году, после установления дипломатических отношений, и с тех пор продлевалось каждые пять лет. В июне этого года активисты из числа американских законодателей призвали власти страны прервать эту практику, но научное сообщество США буквально за неделю собрало более тысячи подписей в поддержку продления данного соглашения с Китаем. Открытое письмо президенту Джозефу Байдену (Joseph Biden) было составлено двумя профессорами Стэнфордского университета и подписано более чем 1000 деятелями науки США из местных вузов. Только сотрудничая с коллегами из Китая и других стран, как отмечают авторы письма, можно добиться прогресса в исследованиях в сфере естественных наук и преуспеть в подготовке следующего поколения научных кадров. В минувшую среду Госдеп США заявил, что власти страны рассматривают возможность продления соглашения с КНР как минимум ещё на шесть месяцев. При этом будет продолжаться работа с Пекином по дополнению и усилению положений существующего соглашения. По словам авторов письма, за прошедшие более чем сорок лет действия соглашения между США и КНР были сформированы прочные и продуктивные связи между членами научного сообщества в обеих странах, был налажен обмен опытом в образовательной сфере, что в итоге принесло США «невероятную выгоду». Как утверждают составители обращения к президенту страны, разрыв связей с КНР по линии научного сотрудничества нанесёт непоправимый вред собственным исследованиям США и работе учебных заведений страны. Продление соглашения, как отметили авторы письма, отвечает собственным интересам США, даже без оглядки на намерения китайской стороны. В Китае испытали самую большую в мире пушку Гаусса — она стреляет 124-кг снарядами
26.08.2023 [11:14],
Геннадий Детинич
В ряде национальных публикаций китайские учёные рассказали об успехах, достигнутых в области электромагнитных пусков. Эта сфера интересна как военным, так гражданским. Электромагнитная пушка может как отправить в цель боевой снаряд, так и запустить в космос небольшой спутник. Китайским разработчикам удалось добиться первенства в этой области, испытав самую мощную в мире пушку Гаусса. Долгие годы военные не видели особенных перспектив в пушках Гаусса — одной из разновидностей электромагнитного ускорителя масс. КПД подобных систем составляет единицы процентов. Более перспективными считаются рельсотроны, КПД которых может достигать 35 %. Но у пушек Гаусса есть несомненный плюс — это отсутствие износа ствола, что очень и очень выгодно при постоянной эксплуатации. В пушке Гаусса начальный импульс заставляет снаряд взлететь и поместиться в центре ствола орудия. После этого волна включения катушек электромагнитного поля, расположенных вдоль ствола, разгоняет снаряд и выстреливает его с высокой скоростью. Такие системы быстро перезаряжаются и бьют прицельнее. Отсутствие контактных рельсов, как в рельсотроне, практически исключает износ платформы. По словам китайских источников, американцы ранее уже создали 120-мм миномёт на эффекте Гаусса. Устройство способно отстреливать 18-кг снаряды. До недавних пор это было самое тяжёлое оружие подобного рода. Но этим летом китайские учёные из Военно-морского инженерного университета испытали созданную ими 30-катушечную пушку Гаусса, которая выстреливала 124-кг снаряды, что стало абсолютным мировым рекордом. Выпущенный снаряд за менее чем 0,05 с разгонялся до 700 км/ч. Он был способен быстро и точно поразить цель на удалении нескольких километров. Точных характеристик оружия не приводят по соображениям секретности, но возможности электромагнитной платформы поражают и без этого. Это уже не отправка снарядов, а запуск небольшой ракеты. Улучшить платформу электромагнитных запусков помогла новая система экранирования электроники. Сила электромагнитного поля в стволе такова, что обычное экранирование не могло защитить встроенные в снаряд датчики, а без них учесть все нюансы поведения снаряда в стволе очень трудно. Учёным пришлось разработать систему экранов, которые не давали мощным электромагнитным импульсам оказывать влияние на встроенные в снаряд приборы. Очевидно, это же потребуется и для запуска на подобных ускорителях спутников, если до этого дойдёт дело. За пять лет китайские компании более чем вдвое увеличили расходы на исследования и разработки
14.08.2023 [14:05],
Алексей Разин
Противостояние КНР и западных стран, а также их ближайших союзников в Азии, вынуждает китайские компании активно тратиться на собственные разработки, повышающие технологический суверенитет страны. За предыдущие пять лет китайские компании увеличили расходы на исследования более чем в два раза, как показывает статистика. По информации Nikkei Asian Review, представленные на китайских фондовых площадках местные компании за предыдущие пять лет потратили на исследования и разработки $228 млрд, что в 2,6 раза выше итогов предыдущей пятилетки. Примером может служить успех компании Jiangsu Shemar Electric, выпускающей изоляцию для электрокабельной продукции из композитных материалов, которые постепенно приходят на замену керамике по причине более высокой безопасности и увеличенной долговечности. Созданные компанией изоляторы из композитных материалов вывели её на лидирующие позиции в мире, на рынках США и Европы её продукция уже занимает 90 %. До сих пор китайские компании старались создавать свои технологии на базе уже существующих зарубежных аналогов, и на этапе удовлетворения спроса на внутреннем рынке Китая такой подход себя оправдывал. Для развития бизнеса в мировом масштабе, однако, уже приходится прибегать к уникальным разработкам. Всего в китайских компаниях, представленных на национальных фондовых площадках, трудится 3,08 млн исследователей и специалистов по НИОКР. В штате Jiangsu Shemar Electric, например, таковых насчитывается 14 % от общей численности персонала. Крупнейший в Китае производитель гибридов и электромобилей BYD располагает штатом из 69 697 разработчиков, более 8 % из них обладают различными учёными степенями. Многие из сотрудников этого подразделения BYD получали образование в престижных вузах США и Европы. Благодаря высокому научному потенциалу компании удалось разработать высокоэффективные тяговые аккумуляторы семейства Blade, которые сочетают высокую плотность хранения энергии с умеренной себестоимостью, базируясь на традиционном для Китая химическом составе с комбинацией лития и фосфата железа. В компании Hygon Information Technology, которая в своё время успела получить лицензию AMD на адаптацию процессоров этой американской марки для продажи на китайском рынке, доля исследователей в штате достигает 90 %. Они способны в среднем зарабатывать по $124 000 в год, хотя многим из них ещё нет сорока лет. Это лишь несколько примеров высокой активности китайских компаний в сегменте научных исследований и прикладных разработок. В Китае разработкой чиплетных технологий займётся серьёзная наука
03.08.2023 [12:39],
Геннадий Детинич
Китайский фонд финансирования фундаментальных исследований взял под крыло разработку в стране технологий создания чипов из нескольких кристаллов, то есть из чиплетов. Фонд NSFC сообщил, что выделит $6,4 млн на примерно 30 проектов по созданию суверенных технологий в области чиплетостроения. Такая компоновка рассматривается как способ повысить функциональность и производительность микросхем для всех сфер экономики и науки, что также защитит от санкций. Заявки на конкурс проектов будут приниматься в первых числах сентября. Финансирующий орган интересуют разработки, которые помогли бы освоить производство, компоновку, разборку и повторное использование чиплетов при производстве чипов. Деньги на проекты будут выделяться сроком до трёх лет. От разработчиков ждут результат, но обещают строго не судить, если его не будет или он не оправдает вложений. Как в своё время сообщало агентство South China Morning Post, ещё в марте в кулуарах одного из мероприятий министр науки и технологий Ван Чжиган (Wang Zhigang) заявил, что страна должна «работать над развитием исследовательской среды, которая терпимо относится к неудачам и поощряет исследователей тратить больше времени». Это связано с тем, что исследования «в фундаментальных областях часто не имеют чёткого пути, поскольку методы зачастую новы и непонятны и это ведёт к относительно высокому проценту неудач». В то же время разработка технологий производства и использования чиплетов относятся к области практических знаний и большой вопрос, как методы финансирования большой науки, где «выхлоп» часто непредсказуем, скажутся на курировании полупроводниковых проектов. В любом случае Китаю надо самостоятельно заниматься чиплетами. Санкций для него будет ещё много интересных и разных и опыт в производстве высокоинтегрированной электроники обязательно окажется востребованным, какой бы они ни был. В Китае построят самую высокую башню падения — в ней микрогравитация будет длиться 20 секунд
21.07.2023 [09:26],
Геннадий Детинич
В Китае приступили к строительству 40-м башни падения и проектируют башню высотой свыше 200 метров, чтобы проводить предварительные испытания космических приборов в условиях микрогравитации. Новинка даст возможность воспроизведения гравитации любой силы для имитации силы тяжести на Луне, Марсе или на других небесных телах. Опыты на Земле помогут увеличить научную отдачу от работы приборов в космосе. Сегодня самая высокая башня падения расположена в Бремене в местном университете. Её высота составляет 146 м с трубой для создания микрогравитации длиной 110 м. Это позволяет запускать приборы и экспериментальные установки в свободный полёт длительностью 10 с. Китайская установка MEFEL (Microgravity Experiment Facility with Electromagnetic Launch) будет способна создавать микрогравитацию в течение 4 с. Для запуска, разгона и торможения пакета с приборами будет использован линейный двигатель, что похоже на работу электромагнитной катапульты для запуска самолётов с палубы авианосца. По словам разработчиков, установка позволит проводить до 100 экспериментов в день с потреблением электричества для каждого из них на уровне 1 кВт·ч. Передовая система запуска и торможения обеспечит мягкое обращение с экспериментальными приборами, которые на этапах запуска и торможения подвергаются повышенным нагрузкам. Это обеспечит линейный электродвигатель длиной три метра. Башня падения, которую построят в Пекине, будет подготавливать эксперименты для проведения на космической станции. Предварительная обкатка экспериментов на земле обеспечит гарантию наилучшего проведения опытов в космосе в условиях настоящей микрогравитации. Наконец, амбиции Китая в отношении покорения Луны, Марса и космоса в целом обещают проявиться в следующем поколении башен падения, в которых микрогравитация будет поддерживаться 20 с, а пакет научных приборов может весить до 500 кг. Китайские учёные добились рекордного КПД для тандемных солнечных ячеек из перовскита — 29 %
20.06.2023 [16:11],
Геннадий Детинич
Издание South China Morning Post сообщает, что учёные из Нанкинского университета создали самую эффективную в мире солнечную ячейку из двух слоёв перовскита. КПД новой ячейки достиг значения 29 %. Но самое интересное, что учёные создали компанию для начала массового производства перовскитных солнечных элементов, линии которой разовьют достаточную мощность уже к сентябрю этого года. Группа китайских исследователей побила собственный рекорд, установленный в июне прошлого года. Тогда КПД тандемной перовскитной ячейки достиг 28 %. За год группа улучшила результат и теперь заявляет о достижении самой высокой в мире эффективности для данного типа ячеек — на уровне 29 %. Отметим, тандемные ячейки из перовскита и кремния показывают более высокие результаты. По последним данным — это 33,2 %. Тем не менее, тандемные ячейки из одного лишь перовскита, точнее, из двух соединённых друг с другом перовскитных плёнок, в перспективе обещают оказаться предпочтительнее иных вариантов. Перовскит при массовом производстве будет дешевле кремния. Китайцы, например, рассчитывают снизить цену на солнечные ячейки из перовскита в два раза по сравнению с кремниевыми. Кроме того, ячейки из перовскита можно выпускать по струйной технологии и делать их очень и очень тонкими, а это даст возможность наложить плёнку на поверхность едва ли не любой кривизны. Добиться рекордного КПД для тандемной ячейки из одного лишь перовскита учёные смогли благодаря оптимизации промежуточного слоя, который должен был быть максимально прозрачным и обладать максимально возможной проводимостью для электронов. Верхний слой перовскита в тандеме был подобран для поглощения более коротких длин волн солнечного света, а нижний — более длинных. Имитация длительного времени службы показала, что новые ячейки сохраняют эффективность на уровне 90 % после 600 часов непрерывной работы под солнечным светом. Для коммерческого продвижения разработки учёные создали стартап Renshine Solar. В этом году компания подписала соглашение о совместном промышленном проекте с правительством города Чаншу в провинции Цзянсу и построила производственную линию, которая должна достичь мощности 150 МВт уже к сентябрю (в новости не уточняет, но это скорее, годовая мощность производства). О перовскитных ячейках много говорят учёные, и было бы интересно увидеть их в живой природе. В Китае разрешили тестовый запуск первой в мире АЭС на ториевом реакторе
16.06.2023 [08:48],
Геннадий Детинич
Китайский национальный регулятор в сфере ядерной энергетики дал зелёный свет опытной эксплуатации первой в мире АЭС на ториевом топливе. Успех мероприятия будет означать продвижение Китая в сторону энергетической независимости. По некоторым подсчётам, запасов тория в стране хватит на 20 тыс. лет снабжения Поднебесной электричеством и теплом. Более того, стартовал проект по созданию малого модульного реактора на тории — их будут ставить везде. В своё время проект ториевого реактора Шанхайского института прикладной физики Китайской академии наук попал на первые страницы национальных газет. Во время закладки первого камня при строительстве комплекса была приглашена группа даосских монахов для обращения к небесам за благословением проекта. Работы стартовали в 2018 году и были завершены за три года вместо расчётных шести лет. Но затем проект забуксовал. Руководству института понадобились два года на согласование работ с экологами и регулятором, чтобы доказать его безопасность. Разрешение на опытную эксплуатацию ториевого реактора выдано 7 июня 2023 года. Реактор и 2-МВт электростанция на его основе построены в провинции Ганьсу в городе Вувее (Увэйе) на окраине пустыни Гоби. В этом проявилась главная особенность ториевых реакторов — вода для их охлаждения не нужна. Теплоноситель — расплав солей — одновременно является транспортом для доставки топлива в зону реактора и он же выводит отработанное топливо из активной зоны. Ториевые реакторы считаются намного безопасней классических атомных. Вода используется только во втором контуре и не контактирует с радиоактивными материалами. Даже в случае аварии ториевый реактор просто остынет без новой порции топлива без взрывов и разброса радиоактивных веществ. Это идеальный вариант для засушливых районов. В институте поделились новостью, что стартовала разработка малых модульных реакторов на ториевом топливе. В случае успеха технология может быть реализована не только на местном рынке, но также среди стран-партнёров Китая. Этим проектом интересуются специалисты во всём мире. Два года назад после завершения строительства проект был благосклонно встречен в научной среде и удостоился обзора в журнале Nature. В США в 60-е годы прошлого века пытались создать ториевые реакторы, но они так и не вышли из стен лабораторий. Сегодня интерес к жидкосолевым реакторам на ториевом топливе возвращается. Проекты начали рассматривать в Швейцарии и Норвегии. Принцип работы ториевого реактора строится на ядерной реакции изотопа тория-232 в процессе облучения вспомогательным радиоактивным топливом. Изотоп поглощает нейтроны и образует уран-233. Дальше происходит обычная для ядерных реакторов реакция расщепления урана с выделением тепла. Солевой раствор нагревается примерно до 450 °C и постепенно продвигается по тепловому контуру, отдавая тепло воде, которая превращается в пар и вращает турбину. Если испытания окажутся многообещающими, то уже к 2030 году будет построена опытная ториевая АЭС мощностью до 400 МВт. |