Сегодня 26 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → лазеры
Быстрый переход

Ученые успешно протестировали лазерную зарядку для спутников

Лазерный луч можно использовать не только для передачи данных в космосе и для поражения целей. Его энергии хватит, чтобы зарядить аккумуляторы небольших спутников, рои которых обещают появиться на орбите. Солнечные батареи нецелесообразно использовать для их питания, а направленный энергетический луч — вполне.

 Источник изображения: WiPTherm

Источник изображения: WiPTherm

Четыре года назад в Европейском союзе создали консорциум по разработке системы беспроводного питания наноспутников. В него вошли пять организаций: португальский Институт физики перспективных материалов, нанотехнологий и фотоники (IFIMUP), факультет естественных наук Университета Порту, также португальский Центр нанотехнологий и интеллектуальных материалов (CeNTI), Европейский центр исследований и разработок, базирующийся в Португалии, Институт системной и компьютерной инженерии, технологий и науки (INESC TEC), а также Университет Лиможа (Франция) и Университет Виго (Испания).

Консорциум начал работать над проектом Innovative Wireless Power Devices Using Micro-Thermoelectric Generators Arrays (WiPTherm). Основной целью проекта WiPTherm было создание инновационной системы беспроводной передачи энергии, которая могла бы заряжать компоненты накопителей энергии на спутниках микро- и наноразмеров. Интересно отметить, что выбор был сделан в пользу термоэлектрических, а не фотоэлектрических приёмных систем.

Группа разработала приёмник и оптическую систему с использованием массива линз и 27 термоэлектрическими датчиками. В качестве передатчика энергии был взят за основу 1550-нм лазер, обычно использующийся для оптоволокна. Согласно целям проекта, группа должна была создать 40-Вт источник энергии с далёкой перспективой добиться передачи по лучу 1 кВт энергии.

Недавняя демонстрация технологии на авиабазе Сан-Хасинту в Авейру (Португалия) подтвердила жизнеспособность разработки, хотя мощность луча на выходе достигла всего 20 Вт. Попав на датчики, лазер создал перепад температуры, и это привело к протеканию электрического тока в системе приёмника. С учётом перспектив обуздания излучения мощностью до 1 кВт крепнет ощущение, что это технология двойного назначения. Для наземных и даже воздушных целей она не будет представлять опасности, но для объектов на орбите может создавать угрозу.

С точки зрения питания микроспутников по лазерному лучу идея достаточно здравая. Один большой корабль на высокой орбите, где Земля никогда не заслоняет Солнце, способен будет питать десятки, сотни и, скорее всего, тысячи мелких аппаратов, поддерживая работу их систем и даже питая электрорактные ионные двигатели.

Первые боевые испытания лазерного оружия прошли в Великобритании

Великобритания провела первые боевые испытания лазерного оружия с высокой мощностью против воздушной цели. Предполагается, что проведённые стрельбы откроют путь к созданию недорогой альтернативы ракетам ПВО для уничтожения таких целей, как военные беспилотники.

 Источник изображений: Министерство обороны Великобритании

Источник изображений: министерство обороны Великобритании

Во время испытаний на Гебридских островах лазерная установка DragonFire уничтожила приближающиеся беспилотники с расстояния в несколько миль, что, по мнению экспертов, стало важной вехой для британских военных, сообщает The Times. Испытания прошли на полигоне в Шотландии, и британское министерство обороны «важным шагом» на пути к принятию технологии на вооружение. Министр обороны Грант Шаппс (Grant Shapps) заявил, что технология может снизить «зависимость от дорогостоящих боеприпасов, а также уменьшить риск сопутствующего ущерба».

По словам представителей министерства обороны Великобритании, лазерное оружие DragonFire достаточно точно, чтобы поразить монету в 1 британский фунт с расстояния в километр. Диаметр данной монеты составляет всего 23 мм.

Также было отмечено, что как британская армия, так и флот рассматривают возможность использования лазерного оружия в своих перспективных системах противовоздушной обороны (ПВО). Заметим, что Великобритания станет не первой страной, которая использует лазеры в качестве оружия — ВМС США уже установили лазерные системы ПВО от Lockheed Martin на нескольких кораблях.

Заметим, что главным средством ПВО сейчас являются ракеты. Причём применяемые в таких системах боеприпасы могут быть гораздо дороже уничтожаемых ими беспилотников: некоторые из таких ракет стоят миллионы долларов, тогда как беспилотник может стоить лишь несколько тысяч.

По данным минобороны Великобритании, 10-секундная стрельба из системы DragonFire по стоимости эквивалентна использованию обычного бытового обогревателя в течение часа. Также было отмечено, что стоимость эксплуатации системы обычно не превышает 10 британских фунтов ($12,7 или 1130 рублей) за выстрел.

Лазерное оружие, которое официально называется «энергетическое оружие с лазерным наведением» (LDEW) использует мощный световой луч для поражения цели и может наносить удары в буквальном смысле со скоростью света.

Дальность действия системы DragonFire засекречена, но это оружие прямой видимости, то есть оно может атаковать любую видимую цель в пределах досягаемости. Система разрабатывается Лаборатории оборонной науки и техники (Defence Science and Technology Laboratory — DSTL) совместно с промышленными партнерами по заказу минобороны Великобритании.

Руководитель DSTL доктор Пол Холлинсхед (Paul Hollinshead) сказал: «Благодаря этим испытаниям мы сделали огромный шаг вперед в реализации потенциальных возможностей и понимании угроз, которые несет в себе оружие направленной энергии». Также было отмечено, что оружейная система DragonFire — результат совместных инвестиций минобороны и промышленности Великобритании в размере 100 миллионов фунтов стерлингов.

В Бельгии создали светодиоды из перовскита с яркостью в тысячу раз большей, чем OLED

Учёные из бельгийского исследовательского центра Imec создали настолько яркие светодиоды из перовскита (PeLED), что они оказались в тысячу раз мощнее светодиодов из органических материалов. Спонсируемая структурами Европейского союза разработка обещает приблизить появление нового типа полупроводниковых лазеров на PeLED, что подтолкнёт развитие проекционных и зондирующих систем в жизни, медицине и промышленности.

 Прототип сверхъяркого светодиода из перовскита на сапфировой подложке. Источник изображения: Imec

Прототип сверхъяркого светодиода из перовскита на сапфировой подложке. Источник изображения: Imec

Перовскиты — особые соединения полупроводниковых материалов — уже зарекомендовали себя в сфере фотовольтаики. Они позволяют создавать элементы на гибкой подложке, поддерживают высокую мобильность электронов и обещают быть недорогими при производстве. Также они рассматриваются как кандидаты в светодиоды. Именно по этому пути пошли учёные из Imec, когда начинали проект ULTRA-LUX.

Главная задача, которая стояла перед учёными, заключалась в обеспечении подвода тока беспрецедентной плотности на малом участке подложки. Исследователи смогли найти решение в виде чередования прозрачных и непрозрачных слоёв металлизации на сапфировой подложке. Достигнутая на прототипе светодиода PeLED плотность тока составила 3000 А/см2.

Старший научный сотрудник Imec и главный исследователь проекта профессор Пол Хереманс (Paul Heremans) пояснил: «Эта новая архитектура транспортных слоёв, прозрачных электродов и перовскита в качестве полупроводникового активного материала может работать при плотности электрического тока в десятки тысяч раз выше (3 кА/см2), чем у обычных OLED».

Целью исследователей не является разработка сверхъярких экранов для смартфонов или другой электроники. Они ищут путь к созданию полупроводниковых лазеров на основе перовскита, и проделанная работа подводит их к этому.

«В проекте ULTRA-LUX Imec впервые продемонстрировала архитектуру PeLED с низкими оптическими потерями и накачала эти PeLED до плотности тока, которая поддерживает стимулированное излучение света», — говорят учёные. Это уже шаг в область создания тонкоплёночных инжекционных полупроводниковых лазеров из перовскита, что становится ключевой вехой на пути к созданию лазера для покорения новых высот в проецировании изображений, зондировании окружающей среды, медицинской диагностике и за её пределами.

Зонд «Психея» передал на Землю видео с котиком по лазерному лучу с расстояния 31 млн км

NASA сообщило, что впервые из глубокого космоса по лазерному лучу передано видео в высоком разрешении. Дальность передачи в 80 раз превысила расстояние между Землёй и Луной и составила 31 млн км. Скорость передачи оказалась заметно выше пропускных интернет-каналов на Земле. Видео по лучу загрузилось быстрее, чем его смогли получить в центре управления за несколько сот километров от приёмника.

 Источник изображения: NASA

Источник изображения: NASA

Короткая 15-секундная трансляция была заготовлена заранее. Экспериментальная лазерная установка связи не будет передавать на Землю какие-либо данные с научных приборов станции «Психея» (Psyche). Видео высокого разрешения с котом одного из инженеров проекта было стилизовано под «космический» интерфейс с имитацией жизненных показателей кота по кличке Тейтерс, орбитальных траекторий станции и планет и другими фишками.

Максимальная скорость передачи данных по нисходящему каналу достигала 267 Мбит/с, а минимальная — 62,5 Мбит/с. Закодированный в лазерном луче сигнал принимался установкой, смонтированной на телескопе Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния. До Земли сигнал путешествовал в космосе 101 секунду. На передачу видео в центр NASA в Южной Калифорнии потребовалось больше времени, чем сигнал шёл в открытом пространстве.

Первый раз станция «Психея» установила лазерную связь с Землёй 14 ноября. Тогда она и центр управления обменялись техническими сигналами на расстоянии 16 млн км. А 11 декабря со станции на Землю впервые по лазерному каналу передали потоковое видео с максимальной скоростью передачи. Это было в 10–100 раз быстрее, чем если бы работать по радиоканалам. Возможность передавать данные с большей скоростью будет востребована во время путешествий к Марсу и дальше. Станция «Психея» как раз во время выполнения своей основной миссии в главном поясе астероидов между Марсом и Юпитером испытает лазерную связь на самом дальнем удалении Земли от Марса.

Во время тестовой передачи команда NASA смогла загрузить по лазерному каналу в общей сложности 1,3 Тбит данных. Для сравнения, миссия NASA «Магеллан» к Венере в течение всей своей программы с 1990 по 1994 год передала 1,2 Тбит информации.

Cоздан сверхкомпактный ускоритель частиц с энергией в 10 миллиардов электрон-вольт

Учёные из Техасского университета в Остине создали «Усовершенствованный лазерный ускоритель кильватерного поля», который имеет очень компактные размеры, но при этом генерирует высокоэнергетический пучок электронов — до 10 ГэВ или 10 миллиардов электрон-вольт. Это настоящий прорыв в области ускорителей частиц.

Источник изображения: Bjorn «Manuel» Hegelich

Учёные продолжают изучать возможности применения этой технологии, включая потенциал ускорителей частиц в полупроводниковой технологии, медицинской визуализации и терапии, исследованиях в области материалов, энергетики и медицины.

Недавно группа учёных разработала компактный ускоритель частиц, получивший название «усовершенствованный лазерный ускоритель кильватерного поля». Устройство при длине менее 20 метров генерирует электронный пучок с энергией 10 миллиардов электрон-вольт, утверждается в заявлении Техасского университета в Остине. Сам лазер работает в 10-сантиметровой камере, что значительно меньше традиционных ускорителей частиц, которым требуются километры пространства.

Работа ускорителя опирается на инновационный механизм, в котором вспомогательный лазер воздействует на гелий. Газ подвергается нагреву до тех пор, пока не переходит в плазму, которая, в свою очередь, порождает волны. Эти волны обладают способностью перемещать электроны с высокой скоростью и энергией, формируя высокоэнергетический электронный луч. Таким образом получается уместить ускоритель в одном помещении, а не строить огромные системы километрового масштаба. Данный ускоритель был впервые описан ещё в 1979 году исследовательской группой из Техасского университета под руководством Бьорна «Мануэля» Хегелича (Bjorn «Manuel» Hegelich), физика и генерального директора TAU Systems. Однако недавно в конструкцию был внесен ключевой элемент: использование металлических наночастиц. Эти наночастицы вводятся в плазму и играют решающую роль в увеличении энергии электронов в плазменной волне. В результате электронный луч становится не только более мощным, но и более концентрированным и эффективным. Бьорн «Мануэль» Хегелич, ссылаясь на размер камеры, в которой был получен пучок, отметил: «Теперь мы можем достичь таких энергий на расстоянии в 10 сантиметров».

Исследователи использовали в своих экспериментах Техасский петаваттный лазер, самый мощный импульсный лазер в мире, который излучал сверхинтенсивный световой импульс каждый час. Один импульс петаваттного лазера примерно в 1000 раз превышает установленную в США электрическую мощность, но длится всего 150 фемтосекунд — примерно миллиардную долю от продолжительности удара молнии.

Учёные намерены использовать эту технологию для оценки устойчивости космической электроники к радиации, получения трёхмерных визуализаций новых полупроводниковых чипов, а также для создания новых методов лечения рака и передовой медицинской визуализации. Кроме того, этот ускоритель может быть использован для работы другого устройства, называемого рентгеновским лазером на свободных электронах, который может снимать замедленные видеоролики процессов в атомном или молекулярном масштабе. Примеры таких процессов включают взаимодействие между лекарствами и клетками, изменения внутри батарей, которые могут привести к воспламенению, а также химические реакции, происходящие в солнечных батареях, и трансформацию вирусных белков при заражении клеток.

Команда проекта намерена сделать систему ещё более компактной. Они хотят создать лазер, который помещается на столешнице и способен выдавать импульсы множество раз в секунду. Это значительно повысит компактность всего ускорителя и расширит возможности его применения в гораздо более широком диапазоне по сравнению с обычными ускорителями.

Калтех создал революционный миниатюрный лазер: он превратит смартфон в лабораторию, а атомные часы уместит в чип

Инженеры Калтеха (Калифорнийского технологического института) сообщили о создании миниатюрного лазера с блокировкой мод (MLL), схема которого оптимальна для генерации сверхкоротких импульсов. Лазер настолько мал, что поместится в микросхему. Такое решение поможет совершать точнейшие измерения в микромире, что найдёт применение в атомных часах и в аналитических приборах, и даже может найти применение в смартфонах.

 Источник изображения: Alireza Marandi

Источник изображения: Alireza Marandi

«Наша цель — совершить революцию в области сверхбыстрой фотоники, превратив большие лабораторные системы в системы размером с чип, которые можно будет массово производить и применять в полевых условиях, — заявил физик Цюши Го (Qiushi Guo) из Калифорнийского технологического института и Городского университета Нью-Йорка. — Мы хотим не только уменьшить размеры, но и обеспечить удовлетворительные характеристики этих сверхбыстрых лазеров на чипе».

Для точного измерения физических и химических явлений в мельчайших масштабах необходим лазер, обладающий идеальным сочетанием мощности и точности. Большинство лазеров, способных справиться с этой задачей, громоздки, дороги и потребляют много энергии. Новая разработка помещается на кончике пальца, тогда как до этого речь шла о конструкциях размером с лабораторный стол.

Потенциально такие лазеры могут использоваться для самых разных целей: от медицинской визуализации до атомных часов и навигации без помощи GPS. Задача была вместить конкретную схему в достаточно миниатюрные размеры, чтобы лазер на её основе помещался в сумку или даже карман.

Созданный учёными Калтеха миниатюрный лазер — это лазер с блокировкой мод или MLL, который создаёт чрезвычайно быстрые лазерные импульсы за счёт синхронизации фазы. Речь идёт об импульсах длиной в фемтосекунды. Быстрые лазерные импульсы позволяют проводить наблюдения на меньших масштабах и за объектами, которые движутся быстрее, например, за атомами в молекуле. Такие установки в настоящее время в самом лучшем исполнении и с хорошей мощностью довольно большие и требуют значительного количества энергии для работы.

Для создания миниатюрного MLL-лазера учёные использовали такой материал, как ниобат лития в тонкоплёночном исполнении (TFLN). Благодаря ему стало возможным использовать внешние радиочастотные электрические сигналы для точного управления лазерными импульсами. Для создания сверхмалого лазера этот материал был объединен со специальным типом полупроводника, совместимого с TFLN.

Результаты оказались впечатляющими: лазер способен выдавать импульс длиной 4,3 пикосекунды в ближней инфракрасной области с пиковой мощностью около 0,5 Вт. Лазер также оказался универсальным с точки зрения настройки режимов работы, что обещает помочь с его переносом в портативные устройства, которые, правда, ещё предстоит разработать.

«Это достижение открывает путь к использованию сотовых телефонов для диагностики глазных заболеваний или анализа продуктов питания и окружающей среды на наличие кишечной палочки и опасных вирусов, — обещают разработчики. — Это также может позволить использовать атомные часы в масштабе микросхемы, что позволит осуществлять навигацию в условиях, когда GPS скомпрометирована или недоступна».

Китай успешно испытал в космосе технологию оптической спутниковой связи для будущих сетей 6G

Группа учёных из Китая объявила о создании устройства связи, которое может сыграть решающую роль в развитии сетей 6G. Оборудование, основанное на «технологии космической оптической коммутации», было выведено для испытаний на орбиту в августе 2023 года. Установленное на спутнике устройство способно передавать световые сигналы без преобразования их в электрические импульсы. Команда Сианьского института оптики и точной механики Китайской академии наук сообщила, что испытания в космосе прошли успешно,

 Источник изображения: Pixabay

Источник изображения: Pixabay

Традиционные коммутационные устройства связи в процессе передачи данных обычно преобразуют световые сигналы в электрические. Но этот традиционный фотон-электрон-фотонный метод имеет эффект «электронного узкого места», в то время как оптический подход может максимизировать скорость и ёмкость систем обмена данными. Новый метод также может снизить затраты на строительство специальных объектов связи.

Команда китайских учёных посвятила более десяти лет разработке устройства, повышающего возможности, гибкость и скорость передачи информации. «Сети связи следующего поколения, включая 6G, выйдут за рамки наземной связи, это должна быть глобальная сеть, включающая спутниковые узлы», — уверены разработчики. Согласно статье, опубликованной ими в прошлом году, новая технология на сегодняшний день поддерживает скорость передачи данных на уровне 40 гигабит в секунду.

Традиционно связь «спутник-земля» базируется на использовании радиосигнала, но скорость передачи данных сравнительно невысока из-за ограниченного диапазона используемых частот. Поэтому в последнее время всё больше внимания уделяется оптическим технологиям обмена информацией, в частности, лазерам. Полоса пропускания лазера потенциально может достигать нескольких сотен гигагерц, что позволяет упаковывать больше данных в каждую передачу.

Учёные уверены, что обычным коммутационным устройствам будет сложно превысить порог скорости передачи данных в 100 Гбайт/с из-за ограничений пропускной способности. Поэтому жизненно важно разработать более совершенную систему оптического обмена информацией. «Это особенно актуально для межпланетной связи, поскольку оптическая коммутация будет более эффективной, быстрой, компактной и дешёвой», — уверены исследователи.

Несмотря на последний прорыв китайской команды, исследователи говорят, что впереди ещё долгий путь до практического применения новой технологии. Спутниковый Интернет в Китае, включая технологию космической оптической коммутации, все ещё отстаёт от США, поскольку в некоторых важнейших компонентах и технологиях доминируют американские предприятия. На данный момент несколько компаний в отрасли, таких как Starlink Илона Маска (Elon Musk), экспериментируют с оптическим способом межспутниковой передачи данных.

Германия завершила годовые морские испытания боевого лазера — он произвёл более сотни выстрелов

Компания Rheinmetall сообщила, что успешно завершила годовые испытания боевого лазера, интегрированного в систему вооружения фрегата F-124 Sachsen «Саксония». За это время лазерная установка произвела более сотни выстрелов, поразив, в основном, небольшие высокоманёвренные цели в виде дронов и их роёв. Мощность установки составляет 20 кВт, но может быть легко доведена до 100 кВт.

 Источник изображения:

Источник изображения: MBDA Deutschland / Rheinmetall

Морские испытания морского боевого лазера на борту «Саксонии» стартовали летом прошлого года. Конструктивно система размещается в стандартном 20-футовом контейнере (6-метровом). Опытная установка состоит из 12 2-кВт волоконных лазеров, мощность которых объединяется в один луч с помощью диэлектрической решётки. При этом происходит некоторая потеря мощности, но зато процесс масштабирования достаточно прост.

Контракт на изготовление прототипа лазера и его интеграцию в боевые системы «Саксонии» ВМС Германии заключили три года назад с компаниями MBDA Deutschland и Rheinmetall. Первая должна была создать модули для обнаружения и сопровождения целей, пульт оператора и обеспечить подключение всего этого к системе управления корабля. Компания Rheinmetall должна была создать сам лазер и системы его наведения, как и сам контейнер и узлы для его силового и интерфейсного подключения к соответствующим узлам фрегата.

За год морских испытаний ВМС Германии провели шесть кампаний, в ходе которых новая лазерная система использовалась против различных целей, некоторые из которых были очень маневренными. В ходе испытаний система совместно с датчиками корабля обнаруживала, отслеживала и обстреливала цели на основе взаимодействия с другими системами «Саксонии» в рамках запрограммированных правил ведения боевых действий.

В общей сложности лазер выполнил более сотни стрельб, завершившихся двумя демонстрационными днями перед высокопоставленными лицами Германии и НАТО.

По данным Rheinmetall, новый лазер предназначен для борьбы с беспилотниками, роями дронов, скоростными катерами и ракетами на очень малой дальности. Последующие модернизации позволят противостоять сверхзвуковым ракетам, реактивным снарядам, а также минометным и артиллерийским снарядам.

Добавим, в США для военно-морского флота уже поставляются серийно изготовленные боевые лазеры мощностью 60 кВт и сухопутные мобильные системы мощностью 300 кВт. Также приняты на вооружение в российской армии сухопутные боевые лазеры «Пересвет».

Немецкий стартап поможет университету из США построить лазерную установку для термоядерного синтеза

Немецкая компания Marvel Fusion и американский Университет штата Колорадо (CSU) объявили о частно-государственном партнёрстве для строительства на территории кампуса CSU Foothills исследовательского комплекса стоимостью $150 млн по созданию мощных лазеров для термоядерного синтеза. Работы на установке NIF в Ливерморской национальной лаборатории им. Э. Лоуренса доказали осуществимость и перспективность таких реакций и стали примером для подражания.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Компания Marvel Fusion создана в Мюнхене в 2019 году. Она вобрала в себя ряд лучших европейских специалистов по вопросам термоядерного синтеза. В Европейском союзе в рамках проекта Extreme Light Infrastructure (ELI) давно создаётся и эксплуатируется сеть лабораторий с мощными лазерами, поэтому недостатка в опытных научных сотрудниках нет. Компания Marvel Fusion обещает предоставить американским партнёрам весь свой опыт в сфере лазерного зажигания термоядерных реакций, и дальше будет развивать эту тему вместе с ними.

Университет штата Колорадо тоже может похвастаться высоким научным потенциалом и опытом исследований в сфере лазерных технологий. Новый комплекс планируется создать рядом с лабораторией Advanced Beam Laboratory, построенной в 2013 году на территории кампуса. В новом комплексе зданий будет создано не меньше трёх лазеров мощностью до нескольких петаватт каждый с частотой зажигания десять раз в секунду. Технология Marvel Fusion предполагает, что для создания непрерывной и самоподдерживающейся термоядерной реакции в зону для мишени топливо будет подаваться с заданной периодичностью в виде таблеток. Это позволит гибко управлять рабочей мощностью термоядерного реактора на основе лазерного зажигания.

Университет и компания Marvel Fusion также принимают участие в ряде проектов по американской программе LaserNetUS, которую, со своей стороны, бюджетными средствами поддерживает Министерство энергетики США. Это позволяет партнёрам рассчитывать также на государственную помощь в их работе. Термоядерная энергия обещает бесконечную и чистую энергию и чем больше путей и первопроходцев движутся к этой цели, тем скорее будет результат.

Японцы создали прототип ручного сканера терагерцового диапазона — он работает как рентген, только без вредного излучения

Учёные из японского института Riken сообщили о разработке ручного сканера терагерцового диапазона для неразрушающего контроля чего угодно: от анализа лекарственных препаратов до досмотра груза и поиска дефектов в металлических конструкциях. Исследователи преодолели главные барьеры на пути к прибору размером с ладонь — сумели уменьшить габариты и энергопотребление установки.

 Источник изображений: Riken

Источник изображений: Riken

Разработчики давно мечтают создать терагерцовые сканеры компактных размеров. До недавнего времени такие установки занимали несколько комнат и требовали серьёзного питания. В то же время терагерцовый диапазон позволяет «заглянуть» внутрь предметов вплоть до анализа их химического состава на основе данных о поглощении длин волн. Службы обеспечения безопасности тоже встали в очередь за терагерцовыми сканерами. Они обещают ускорить, упростить и обезопасить процедуры досмотра багажа и грузов.

Учёные из института Riken изучали вопрос преобразования инфракрасного излучения в терагерцовое. За основу таких установок можно брать полупроводниковые лазеры, что соседствует с миниатюризацией. Другое дело, что исследователям долго не удавалось эффективно и без существенных потерь преобразовать инфракрасный луч в терагерцовое излучение.

С самого начала учёные взяли в работу такой материал, как ниобат лития (LiNbO3). Это нелинейный кристалл, который оптически прозрачный для диапазона волн 0,4-5,0 мкм и может преобразовывать входные частоты в частоты с другой длиной волны, отчего этот материал широко используют в оптоэлектронике. Прорыв произошёл, когда учёные смогли подобрать правильную длительность импульсов для входного лазера ближнего инфракрасного диапазона, чтобы мощность луча не рассеивалась в кристалле, а максимально переходила в терагерцовое излучение.

Удачное открытие позволило увеличить выходную мощность на шесть порядков, но размеры установки оставались неприемлемы для ручного оборудования — где-то метр на метр посадочной площади. И тогда объёмный кристалл ниобата лития заменили на тонкий кристалл ниобата лития с искусственной поляризационно-модулированной микроструктурой, который называется периодически поляризованным кристаллом ниобата лития (PPLN). Такие кристаллы обычно используются в области видимого света, но в сочетании с лазером инфракрасного диапазона с правильно подобранными выходными импульсами удалось добиться следующего прорыва — создать сканер терагерцового диапазона размером с ладонь.

Учёные предсказывают, что совсем скоро вооружённые такими сканерами роботы начнут инспектировать строения, проводить быстрые досмотры на транспортных хабах, анализировать состав лекарств и продуктов питания и делать массу других полезных вещей без необходимости использовать рентгеновское оборудование, как раньше. Переговоры с производителями оборудования уже ведутся, в частности, с компаниями Ricoh, Topcon, Mitsubishi Electric и Hamamatsu Photonics.

Alphabet вместо аэростатов будет использовать лазеры для подключения к интернету труднодоступных регионов

Компания Alphabet уже пыталась обеспечить людей, проживающих в сельской местности и в отдалённых местах нашей планеты, с помощью высотных аэростатов в стратосфере. Теперь она попробует связать глубинку с Сетью с помощью лазеров.

 Терминал Taara. Источник изображения: Reuters

Терминал Taara. Источник изображения: Reuters

Проект Taara создан в недрах принадлежащей компании Google инновационной лаборатории X. Он был инициирован ещё в 2016 году, сначала предусматривалось использование стратосферных шаров в качестве своеобразной альтернативы спутникам, но себестоимость построения и эксплуатации таких сетей оказалась чересчур высокой. Руководство Taara совместно с индийской телекоммуникационной компанией Bharti Airtel сообщили журналистам, что планируют крупномасштабное развёртывание лазерных телекоммуникационных технологий в Индии, но финансовые детали пока не раскрываются.

Taara помогает связать интернет-сервисы в 13 странах, включая Австралию, Кению и Фиджи, также заключено соглашение с Econet Group и её подразделением Liquid Telecom в Африке, интернет-провайдером Bluetown в Индии и Digicel на тихоокеанских островах. По словам представителя Taara, целью является относительно дешёвая связь стоимостью по доллару за гигабит для конечных потребителей.

По данным руководства Taara, своеобразное «прозрение» наступило ещё во время тестирования шаров в рамках проекта Loon, передававших информацию с помощью лазеров от одного к другому. Теперь разработки основаны на наземных решениях с использованием похожих лазеров, их уже используют партнёры вроде Bharti Airtel. Как сообщают разработчики, Taara уже обеспечивает передачу большего объёма данных ежедневно, чем Loon — за всю свою историю.

 Терминал Taara. Источник изображения: Reuters

Терминал Taara. Источник изображения: Reuters

По словам сотрудников Taara, только в Индии имеются сотни тысяч деревень, не обеспеченных интернетом и ожидающих установки нового оборудования. По мнению некоторых экспертов, Taara также поможет быстрее передавать информацию и в городской среде развитых стран, поскольку дешевле передавать информацию между зданиями по лучу, чем прокладывать оптоволоконные кабели.

В июле 2020 года Google направила $10 млрд на цифровизацию Индии. Она вложила $700 млн в покупку 1,28 % акций Bharti Airtel в прошлом году. В то время как X и Google являются родственными структурами под «зонтиком» Alphabet, партнёрство Taara с Bharti Airtel осуществляется независимо от инвестиций Google.

Швейцарцы показали замену подводным интернет-кабелям — лазер со скоростью до 1 Тбит/с на канал

Группа учёных Высшей технической школы Цюриха (ETH Zurich) сделала большой шаг в направлении беспроводной передачи данных. Они продемонстрировали работу системы на основе лазера, которая смогла обеспечить пропускной способностью более 1 Тбит/с при передаче данных на расстояние 53 км. Исследователи считают, что эта технология в итоге позволит отказаться от паутины кабелей, протянутых по всему миру.

 Источник изображения: ETH Zurich

Источник изображений: ETH Zurich

Данная работа является частью европейского проекта Horizon 2020, который финансирует передовые исследования на сумму 80 миллиардов евро. Команда ETH под руководством профессора Юрга Лейтхольда (Jürg Leuthold) предполагает, что оптическая система передачи данных будет работать со спутниками с гораздо более высокой скоростью, что устранит необходимость в физической интернет-магистрали, пересекающей океаны.

В этом исследовании учёные из ETH Zurich не использовали спутник, так как лазерная передача данных и так прекрасно работает в космосе благодаря полному отсутствию воздуха, а вот на Земле он мог бы помешать ей. Например, спутники Starlink компании SpaceX используют лазеры для передачи данных между собой. Учёным было необходимо убедиться, что терабитный лазер сможет работать в пределах атмосферы Земли. Для этого команда выбрала далёкую, высоко поднятую цель: Юнгфрауйох (Jungfraujoch), горный перевал в Швейцарских Альпах, расположенный примерно в 53 км от источника лазера.

Для поддержания более высокой скорости передачи данных, оптическая система, разработанная ETH Zurich, использует модулированную световую волну. Это означает, что приёмник может считывать несколько состояний каждого передаваемого символа. Изменяющиеся фазовые углы и амплитуда создают сигнал в 64 QAM. Турбулентность в атмосфере может исказить эти тщательно построенные формы волны, поэтому исследователи в сотрудничестве с французской аэрокосмической фирмой Onera создали чип микроэлектромеханической системы (MEMS) с 97 микроскопическими зеркалами. Этот чип может корректировать неправильный фазовый сдвиг с частотой 1500 раз в секунду, обеспечивая целостность сигнала.

В данном исследовании использовался лишь лазер с одной длиной волны света, то есть с одним каналом передачи, но команда считает, что технология может быть масштабирована до 40 каналов. При скорости около одного терабита на канал экспериментальная технология начинает выглядеть как нечто, способное заменить физические кабели. Нынешние спутниковые интернет-системы все ещё полагаются на сигналы микроволнового диапазона, и потому они не могут передавать такое же количество данных, сколько может высокочастотный лазер. Вполне возможно, что будущие спутниковые интернет-созвездия будут использовать подобные лазеры для передачи данных на поверхность Земли. Однако исследователи из ETH Zurich оставят это другим учёным и инженерам.

По планам команды следующим этапом является разработка улучшенных формул модуляции для увеличения пропускной способности.

Японцы в 10 раз увеличили мощность полупроводникового лазера — теперь он способен резать металл

Группа японских учёных из Университета Киото разработала технологию масштабирования фотонно-кристаллических лазеров с поверхностным излучением (PCSEL). Опытный полупроводник обеспечил мощность лазера на уровне 50 Вт или до 10 раз больше, чем ранее. Этого уже достаточно для использования таких лазеров в металлообработке, что упростит и удешевит создание металлорежущих лазерных станков и линий.

 Источник изображений: Susuma Noda

Источник изображений: Susuma Noda

Сегодня в металлообработке используются волоконные или газовые лазеры, что делает станки громоздкими, слабоуправляемыми и дорогими. Если использовать для этих целей полупроводниковые лазерные диоды, то можно значительного удешевить оборудование и сделать его компактнее. Не менее важна и простота управления полупроводниковым лазером — резка с его помощью показывает чудеса гибкости.

 Обычный лазер на фотонном кристалле

Обычный лазер на фотонном кристалле

До сих пор лазеры на основе фотонных кристаллов PCSEL изготавливались сравнительно маломощными с размерами излучающей поверхности до 1 мм. В общем случае структура такого лазера включает в себя полупроводниковый лист с регулярно расположенными нанометровыми отверстиями. Подобная структура за счёт преломления и отражения света подавляет ненужные колебания (моды) и усиливает нужные, образуя согласованный поток фотонов с относительно большой площади излучателя в виде лазерного луча. Для получения более мощного лазера с излучением с большей площади поверхности кристалла есть два барьера: растущее в объёме полупроводника тепло, которое сбивает все настройки (меняет коэффициент преломления и дальше по списку), а также потеря фокуса.

 Улучшенная структура наноотверстий для увеличения эффективной площади лазера

Улучшенная структура наноотверстий для увеличения эффективной площади лазера PCSEL

После многих лет исследования японцы сумели таким образом подобрать регулярные отверстия в полупроводнике, чтобы свет с большой площади оставался когерентным и не терял фокус. Также была решена проблема терморегуляции. В целом для этого в лист полупроводника были добавлены регулярные овальные отверстия и тщательно выверены их форма и размеры. В итоге получилось создать лазер PCSEL размерами 3 мм, что в десять раз больше площади предыдущих разработок. Как уверяют учёные, подобный подход позволит создать лазеры PCSEL размерами до 10 мм и со временем выпустить полупроводниковый лазер мегаваттного уровня.

Наконец, современные лазеры PCSEL изготавливаются методом электронно-лучевой литографии, когда рисунок на полупроводниковой подложке создаёт бегущий по ней электронный луч. По этому же принципу работали телевизоры и мониторы на электронно-лучевых трубках. Такой процесс очень точный, но медленный. Для изготовления PCSEL большой площади японцы предлагают использовать метод нанопечати, что для выпуска регулярных структур весьма разумно. Изготавливается матрица и затем с её помощью делаются оттиски на кремниевой пластине (на фоторезисте) — элементарная штамповка только на наноуровне. Японские компании как раз специализируются на таком типе печати полупроводников. Будет быстро и недорого, хотя там есть свои нюансы.

Добиться масштабирования с 1 мм до 3 мм — это показатель того, что успех достижим, считают учёные, хотя дальнейшее масштабирование может оказаться не таким простым.

В 400 раз быстрее Starlink: в NASA с помощью лазера обновили рекорд скорости передачи данных из космоса на Землю

В NASA сообщили, что экспериментальная система спутниковой лазерной связи достигла нового рекорда — 200 Гбит/с по нисходящему каналу. Это в 400 раз быстрее, чем позволяет лучший тариф Starlink (500 Мбит/с). За шесть минут прохождения над наземной станцией связи спутник по системе TeraByte InfraRed Delivery (TBIRD) успевает передать несколько терабайт данных. Подобная связь выведет космическую коммуникацию на новый уровень и это время не за горами.

 Источник изображения: NASA

Источник изображения: NASA

Экспериментальный кубсат NASA Pathfinder Technology Demonstrator 3 (PTD-3) выведен в космос в мае прошлого года миссией Transporter-5 компании SpaceX. На борту небольшого спутника установлен блок лазерной связи размерами с «коробку для обуви» и массой 11 кг. Блок в основном собран из комплектующих, доступных в свободной продаже. Специально для проекта пришлось изготовить только небольшое количество узлов. В этом изюминка проекта — он не должен быть слишком сложным и дорогим.

В июне прошлого года блок лазерной связи на орбите установил первый абсолютный рекорд, передав на Землю данные со скоростью 100 Гбит/с. Такую высокую скорость удалось достичь за счёт более короткой волны лазерного луча по сравнению с радиосигналом. Но в этом же крылись трудности: луч необходимо направлять точно на приёмник (им стал небольшой телескоп в OCTL JPL) и погода должна быть хорошей без сильной облачности.

Кстати, на процесс упрощения конструкции лазерного передатчика очень сильно повлияло то, что разработчики отказались от индивидуальной системы наведения лазерного луча на земной приёмник. Система наводится подруливанием двигателями кубсата. Так оказалось практичнее и достаточно надёжно.

Кроме аппаратной части разработчикам пришлось несколько модернизировать протоколы передачи данных. В частности, в случае появления ошибки в передаче данных повторно передаётся только блок с ошибкой. Это позволяет не загружать канал ненужными повторениями и также ведёт к увеличению общей скорости трансляции.

Вместе со специалистами NASA в проекте участвуют Лаборатория им. Линкольна Массачусетского технологического института (MIT-LL) в Лексингтоне, штат Массачусетс, где собрали полезную нагрузку; компания Terran Orbital, изготовившая спутниковое шасси и сам спутник; и расположенная в Испытательной лаборатории оптической связи (OCTL) Лаборатории реактивного движения NASA (JPL) в Южной Калифорнии наземная станция.

В будущем блоки лазерной связи должны будут обеспечить коммуникационными каналами постоянные миссии на Луне, Марсе и далее. Также высокоскоростные оптические каналы появятся в новых космических научных приборах, включая телескопы. Там ожидается получение гигантских объёмов информации и всё это надо передавать на Землю.

В ходе миссии Artemis II в NASA намерены использовать лазеры для передачи видео в реальном времени в HD-качестве

Если в прошлом агентство NASA использовало радиосигналы для передачи информации при посредничестве т.н. Deep Space Network из дальнего космоса всевозможными исследовательскими зондами, то теперь на смену радиосвязи приходит более перспективная технология. Ожидается, что использование лазеров позволит значительно увеличить объём данных, передаваемых космическими аппаратами, в первую очередь — в ходе ближайших лунных миссий.

 Иллюстрация. Источник изображения: NASA

Иллюстрация. Источник изображения: NASA

Известно, что NASA будет использовать терминал лазерной связи Orion Artemis 2 Optical Communications System (O2O) в ходе пилотируемой лунной миссии Artemis II. По данным агентства, система O2O на борту капсулы Orion будет отправлять видео высокого разрешения от окололунного пространства. Это позволит отправлять на Землю изображения и видео в непревзойдённом качестве в режиме реального времени.

В последние годы для демонстрации возможностей новой технологии агентство вывело в космос несколько спутников. Laser Communication Relay Demonstration (LCRD) запустили в 2021 году, TeraByte InfraRed Delivery (TBIRD) — в прошлом году, он обеспечил передачу данных со скоростью до 200 Гбит/с.

 Иллюстрация. Источник изображения: NASA

Иллюстрация. Источник изображения: NASA

Теперь NASA готовит систему LCRD Low-Earth-Orbit User Modem and Amplifier Terminal (ILLUMA-T), которая должна отправиться к МКС позже в текущем году. ILLUMA-T будет смонтирована на японском экспериментальном модуле. После введения в эксплуатацию ILLUMA-T будет ретранслировать данные на Землю при посредничестве LCRD — это станет основой для использования системы O2O, которая будет на борту Orion в ходе миссии Artemis II.

Тем не менее в NASA отмечают, что эксперименты по организации лазерной связи пока находятся лишь на начальной стадии. Успех миссии Artemis I в прошлом году предопределил запуск Artemis II с астронавтами на борту корабля. Это будет первым пилотируемым полётом к Луне с начала 1970-х годов.

Поскольку на борту Orion будет находиться экипаж, ожидается, что миссия сможет проходить буквально в режиме «реалити-шоу» — лазерная связь позволит астронавтам проводить множество прямых трансляций на фоне потрясающих видов близкой Луны в иллюминаторах.


window-new
Soft
Hard
Тренды 🔥
«Не думаю, что Nintendo это стерпит, но я очень рад»: разработчик Star Fox 64 одобрил фанатский порт культовой игры на ПК 8 ч.
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 9 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 12 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 13 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 13 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 14 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 15 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 16 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 17 ч.
Мошенники придумали, как обманывать нечистых на руку пользователей YouTube 17 ч.
Чтобы решить проблемы с выпуском HBM, компания Samsung занялась перестройкой цепочек поставок материалов и оборудования 3 мин.
Новая статья: Обзор и тест материнской платы Colorful iGame Z790D5 Ultra V20 6 ч.
Новая статья: NGFW по-русски: знакомство с межсетевым экраном UserGate C150 8 ч.
Криптоиндустрия замерла в ожидании от Трампа выполнения предвыборных обещаний 8 ч.
Открыт метастабильный материал для будущих систем хранения данных — он меняет магнитные свойства под действием света 10 ч.
Новый год россияне встретят под «чёрной» Луной — эзотерика ни при чём 13 ч.
ASRock выпустит 14 моделей Socket AM5-материнских плат на чипсете AMD B850 13 ч.
Опубликованы снимки печатной платы Nvidia GeForce RTX 5090 с большим чипом GB202 15 ч.
От дна океана до космоса: проект НАТО HEIST занялся созданием резервного космического интернета 15 ч.
OpenAI рассматривает возможность выпуска человекоподобных роботов 17 ч.