Опрос
|
реклама
Быстрый переход
Китайские учёные научились добывать полупроводниковые материалы из сточных вод с помощью бактерий
30.10.2023 [18:26],
Сергей Сурабекянц
Команде учёных из китайских исследовательских институтов удалось использовать бактерии для очистки сточных вод от органических загрязнителей и получения ряда химических соединений для полупроводниковой промышленности. Этот процесс может проложить путь к устойчивому и экологически чистому производству ценных полупроводниковых материалов. Результаты исследования были опубликованы 16 октября в рецензируемом журнале Nature Sustainability. Исследование, возглавляемое профессором Гао Сяном (Gao Xiang) из Шэньчжэньского института синтетической биологии Китайской академии наук и профессором Лу Лу (Lu Lu) из Харбинского технологического института в Шэньчжэне, продемонстрировало возможность получения материалов, используемых для изготовления полупроводников, из сточных вод с помощью генно-модифицированных бактерий. Исследователям удалось преобразовать загрязнители сточных вод в полупроводниковые биогибриды, состоящие из биологических и небиологических компонентов. Исследовательская группа выбрала морской микроорганизм Vibrio natriegens в качестве отправной точки для модифицирования бактерий. По словам учёных, «это одни из самых быстрорастущих бактерий, которые процветают в средах с высоким содержанием соли и очень устойчивы к сточным водам. Они могут использовать более 200 типов органических материалов в качестве питательных веществ, включая сахара, спирты, аминокислоты и органические кислоты, что делает их идеальными кандидатами для этого исследования». Затем команда «запустила» механизм восстановления сульфатов в Vibrio natriegens, обучив штамм непосредственно поглощать сульфат из окружающей среды и производить сероводород, который затем объединялся с ионами металлов в сточных водах для создания полупроводниковых наночастиц. Метод оказался универсальным и его можно было применять к ионам различных металлов, получая такие соединения, как сульфид кадмия, сульфид свинца и сульфид ртути. Наночастицы фиксировались на поверхности бактерий, образуя полупроводниковые биогибриды. Под воздействием света полупроводниковый материал поглощал солнечную энергию и преобразовывал её в электроны, обеспечивая бактериям дополнительную энергию. В лабораторном эксперименте, в котором биогибриды использовались для очистки сточных вод, 99 % ионов кадмия были таким образом извлечены в виде частиц сульфида кадмия. Эти типы наночастиц, также известные как квантовые точки, стали центральным элементом открытия, за которое другая группа учёных получила в этом году Нобелевскую премию по химии. «После полного цикла биогибриды в сточных водах можно собирать посредством фильтрации или седиментации (осаждения частиц) для извлечения полупроводниковых материалов, — сообщил Гао Сян. — Эта система может стать эффективным и экономически выгодным методом производства очень ценных квантовых точек». При размножении биогибридов в сточных водах они также преобразует органические загрязнители в 2,3-бутандиол (БДО), ценный химикат, который широко применяется в косметике, сельском хозяйстве и здравоохранении. Лабораторные испытания показали, что при искусственном освещении биогибриды производят БДО в два раза быстрее, чем немодифицированные бактерии, при этом степень конверсии углерода увеличивается на 26 %. «Дополнительная энергия, генерируемая наночастицами за счёт поглощения света, повысила эффективность синтеза биогибридов и скорость преобразования органических веществ в сточных водах. Традиционно вся энергия, необходимая для роста бактерий и производства БДО, обеспечивается самими бактериями, что включает в себя самометаболизм и переваривание органических веществ. Дополнительная энергия, полученная за счёт поглощения света, очевидно, ускоряет оба процесса» — пояснил Гао. В эксперименте, проведённом в 5-литровом реакторе, биогибриды были успешно выращены с использованием реальных промышленных сточных вод, достигнув производительности БДО 13 граммов на литр и превзойдя результаты всех предыдущих исследований. Сейчас учёные изучают возможности масштабирования процесса. Основным препятствием становится плохая прозрачность промышленных сточных вод. Поэтому требуются реакторы с большей площадью поверхности, чтобы обеспечить достаточное для активной деятельности бактерий освещение. «Полупроводниковые биогибриды объединяют в себе лучшие качества биологических цельноклеточных катализаторов и полупроводниковых наноматериалов, позволяя нефотосинтетическим промышленным заводам по производству микробных клеток использовать солнечную энергию для химического производства», — резюмировали исследователи. GM запатентовала технологию самоочистки сенсорных экранов с помощью ультрафиолета — отпечатки пальцев за ночь исчезнут сами
17.02.2023 [11:30],
Геннадий Детинич
Отпечатки пальцев и следы пота и жира на сенсорных экранах остаются неприятным моментом использования электроники. Специальные покрытия могут сгладить этот момент, но до конца не устраняют. В компании General Motors придумали, как бороться с этой напастью не затрачивая время на протирку экранов тряпочкой. Интересная технология позволяет убрать все жировые отложения на экранах за несколько часов, например, пока вы спите. После контакта с пальцами на экранах остаются как частички кожи (клеток) человека, так и следы пота и жировых выделений кожи. Также на жир оседают бактерии и грибки, колонии которых могут увеличиваться на биоматериале. Разрушить всё это биологическое разнообразие можно благодаря окислению и в GM придумали, как управлять этим процессом. Специалисты компании предложили встраивать светодиоды ультрафиолетового свечения прямо в дисплеи, добавив, например, четвёртый УФ-светодиод в каждую RGB-триаду экрана. Ультрафиолетовые лампы можно также встраивать в рамку экрана ноутбука или телевизора, как и организовывать внешнюю подсветку, к примеру, отдельными светильниками в салоне автомобиля для освещения сенсорных панелей. Биоматериалы на экране сенсорных дисплеев уничтожает не сам УФ-свет, а частички свободных радикалов, которые возникают в процессе воздействия света на покрытие дисплеев. Таким покрытием могут быть прозрачные оксиды металлов — диоксид титана и прочие. Под воздействием ультрафиолетового света диоксид титана превращается из гидрофобного в супергидрофильный и начинает притягивать влагу из воздуха. Это создаёт на поверхности экрана тонкий слой воды, в котором начинают происходить процессы окисления. Электрохимические реакции приводят к образованию молекул свободных радикалов, которые разрушают клеточный материал, цитоплазму и ДНК бактерий, грибков и других биологических организмов. В течение нескольких часов экран будет медленно очищаться и стерилизоваться. Отключение УФ-излучения вернёт сенсорную поверхность в водоотталкивающее состояние и капли воды сползут с экрана, оставляя его девственно чистым и слегка вспотевшим. Подобный принцип уже используется для самоочищения ряда солнечных панелей, но там весь ультрафиолет приходит вместе с лучами Солнца. Компания GM предлагает не полагаться на природу и организовать доставку ультрафиолета к экранам в любом месте и в любое время суток. Будет интересно увидеть внедрение этой идеи. |