Сегодня 26 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → ракетный двигатель
Быстрый переход

В Индии испытали напечатанный на 3D-принтере ракетный двигатель

Индийская организация космических исследований (ISRO) провела успешные огневые испытания жидкостного ракетного двигателя, который был создан с использованием аддитивных технологий — метод создания трёхмерных объектов путём послойного добавления материала, или другими словами 3D-печать. Ожидается, что это стимулирует развитие космической отрасли страны.

 Источник изображения: ISRO

Источник изображения: ISRO

Испытания созданного на 3D-принтере двигателя проходили 9 мая. Агрегат, в котором сжигалась гиперголическая смесь тетраоксида диазота и монометилгидразина, работал в течение 665 секунд, что стало важнейшим достижением для учёных. Такие двигатели используются в малогабаритных индийских ракетах-носителях Polar Satellite Launch Vehicle (PSLV).

В ISRO отметили, что использование аддитивных технологий позволило сократить количество деталей двигателя с 14 до 1. За счёт этого из конструкции удалось исключить 19 сварных соединений, а также значительно сэкономить на сырье для производства. В дополнение к этому, подход с использованием 3D-печати сократил время производства двигателя на 60 %.

Напомним, ракета-носитель PSLV высотой 44 метра является одним из инструментов доставки грузов на орбиту наряду с LVM-3, другой индийской ракетой. PSLV может выводить до 1750 кг полезной нагрузки на солнечно-синхронные полярные орбиты высотой 600 км. Новая технология производства двигателей может повысить темпы проведения космических пусков. У Индии также есть амбициозные планы в сфере проведение пилотируемых полётов, включая высадку астронавтов на поверхность Луны и создание базы на спутнике Земли к 2047 году.

Первый в мире полёт с клиновоздушным ракетным двигателем закончился крушением, даже не начавшись

Немецкий стартап Polaris Raumflugzeuge сообщил о крушении демонстратора MIRA I с инновационным клиновоздушным ракетным двигателем (aerospike). Демонстратор даже не успел оторваться от взлётной полосы и запустить КВР-двигатель, как вильнул в сторону и под воздействием сильного бокового ветра опрокинулся и загорелся. Взамен уничтоженного экземпляра разработчик пообещал сделать два и большего размера, а деньги на это он получил из бюджета.

 Прототип Источник изображений: Polaris Raumflugzeuge

Прототип MIRA I. Источник изображений: Polaris Raumflugzeuge

Компания Polaris Raumflugzeuge примерно год назад заключила контракт с Федеральным ведомством по оборудованию, информационным технологиям и технической поддержке бундесвера (BAAINBw) на разработку и создание полномасштабного прототипа клиновоздушного ракетного двигателя. Двигатели КВРД разрабатывались ещё в 50-е годы и даже были планы ставить их на челноки программы «Спейс шаттл». Но проект так и не вышел из лабораторий. Полёт немецкого демонстратора с четырьмя обычными турбореактивными двигателями и одним экспериментальным двигателем КВРД должен был стать первым в истории. Но, пока не сложилось.

 За мгновение до катастрофы

За мгновение до катастрофы

Вместо уничтоженного в процессе аварии демонстратора MIRA I длиной 4,25 м компания обещает построить два — MIRA II и III длиной по 5 метров каждый. Конфигурация двигателей и профиль планера останутся те же: клиновидное крыло, по четыре турбореактивных двигателя на кислороде и керосине и по одному КВРД на каждом.

 Списан безвозвратно

Потерян безвозвратно

Клиновоздушные ракетные двигатели интересны именно для космопланов, где нет места для двигателей первой и второй ступени одновременно. Ракета может быть двух- и более ступенчатой, когда сопла колоколообразной формы проектируются каждое на свою высоту. Если сопло одно, как у космоплана, то оно будет эффективно лишь на одной высоте, сжигая зря массу топлива на всех других высотах.

Сопла двигателя КВРД представляют собой две соединённых с одной стороны половинки колокола. Вторая отсутствующая сторона сопла формируется набегающим потоком воздуха. Тем самым профиль сопла меняется, можно сказать, автоматически на всём протяжении полёта от уровня моря до вакуума, в среднем обеспечивая эффективную работу на всех высотах. Жаль, что в этот раз у немцев ничего не вышло — дело даже не дошло до запуска КВРД в воздухе. Было бы интересно увидеть работу этой технологии в условиях реального полёта.

 Испытание прототипа двинателя КВРД NASA

Испытание прототипа двигателя КВРД NASA

Китай испытал связку из четырёх мощнейших ракетных двигателей, которые доставят тайконавтов на Луну

В минувшие выходные на полигоне Тунчуань в северо-западной провинции Шэньси прошли статические огневые испытания счетверённых ракетных двигателей YF-100K. Инженеры хотели убедиться в их полной совместимости и индивидуальной надёжности. Двигатели подтвердили свои характеристики и теперь допущены к лётным испытаниям, которые ожидаются позже в текущем году, но в составе лунной ракеты они будут испытаны позже — не раньше 2027 года.

 Источник изображения: CASC

Источник изображения: CASC

Двигатель YF-100K является модернизированной версией двигателей YF-100, который используется в боковых ускорителях ракеты «Чанчжэн-5». Работает он на смеси керосин-кислород. Каждый YF-100K способен развивать тягу 130 т. Четвёрка двигателей, тем самым, развила тягу свыше 500 т, что подтвердил статический огневой тест в минувшее воскресенье. В Китайской корпорации аэрокосмической науки и технологий (CASC) не уточнили, для какой ракеты предназначена прошедшая испытание четвёрка YF-100K, однако раньше была информация, что CASC разрабатывает новую среднюю по грузоподъёмности ракету «Чанчжэн-12», первую ступень которой как раз должны приводить в движение четыре двигателя YF-100K.

Испытания ракеты «Чанчжэн-12» должны пройти до конца 2024 года. Это ракета диаметром 3,8 м и высотой 59 м. Ракета сможет выводить 10 т полезной нагрузки на низкую околоземную орбиту и шесть тонн на солнечно-синхронную орбиту высотой 700 км. Вероятно, на «Чанчжэн-12» произойдёт обкатка двигателей и под неё также начнётся их производство. В состав первой ступени лунной ракеты «Чанчжэн-10», испытательный полёт которой ожидается в 2027 году, войдёт семь двигателей YF-100K и ещё по семь таких же двигателей будут установлены на пару боковых ускорителей.

Ракета «Чанчжэн-10» высотой 92 м и диаметром 5 м сможет доставлять 70 т полезной нагрузки на низкую околоземную орбиту и 27 т на окололунную орбиту. Отправка тайконавтов на двух ракетах «Чанчжэн-10» ожидается к 2030 году. Одна из ракет доставит к Луне экипаж в корабле, а вторая — спускаемый лунный модуль. Но это будет уже другая история.

В NASA создали электрический ракетный двигатель с рекордной эффективностью

В NASA представили экспериментальный электрический ракетный двигатель H71M мощностью до 1 кВт, обладающий рекордной эффективностью. По словам разработчиков, этот двигатель «изменит правила игры» для будущих космических миссий в составе небольших спутников во всех сферах от сервисного обслуживания в пределах орбит вокруг Земли до планетарных миссий по всей Солнечной системе.

 Источник изображений: NASA

Источник изображений: NASA

Источник не раскрывает подробностей. В целом речь идёт о существенной доработке и миниатюризации хорошо известных электроракетных двигателей на эффекте Холла. Это электрические двигатели, которые используются в космосе свыше 50 лет. В NASA смогли создать более эффективную и компактную версию этого двигателя. Так, если современные аналоги таких двигателей могут переработать объём рабочего тела массой до 10 % от массы аппарата и работают до нескольких тысяч часов, то новый двигатель H71M сможет переработать объём топлива до 30 % от массы аппарата в течение 15 тыс. часов.

Двигатель H71M позволит увеличить манёвренность небольших спутников: они смогут летать дальше и разгоняться и тормозить дольше. В этом масса преимуществ и возможностей. Спутники сами будут подниматься на нужную орбиту с низких орбит и смогут самостоятельно уходить к Марсу и другим планетам с геопереходных орбит, экономя стартовые ресурсы. Также больше возможностей для манёвра получат спутники из сопутствующей нагрузки, которые вынуждены следовать за основной полезной нагрузкой, что ограничивает такие миссии и, наконец, сфера сервисных спутников для продления сроков службы других космических аппаратов получит действенный инструмент для операций на орбите.

В NASA пока не собираются самостоятельно развивать сферу электроракетных двигателей. Агентство будет передавать лицензии коммерческим структурам. В частности, первой лицензию на двигатели H71M приобрела компания Northrop Grumman. Она уже создала собственную версию двигателя под названием NGHT-1X и сейчас проводит тестирование прототипа на износ в вакуумной камере в собственном исследовательском центре.

Дочерняя компания Northrop Grumman — SpaceLogistics — разрабатывает сервисный спутник Mission Extension Pod (MEP) с двумя двигателями NGHT-1X. Ожидается, что в 2025 году три аппарата MEP поднимут по одному спутнику связи на более высокие орбиты. Небольшие спутники MEP будут служить своего рода «реактивными ранцами» для обслуживаемых платформ. Они будут присоединяться к ним и затем обеспечивать движение, что на годы продлит эксплуатацию на орбите дорогого оборудования.

Когда новые электроракетные двигатели получат широкое коммерческое распространение, в NASA не исключают возможности приобретать их для собственных нужд и государственных космических программ.

Ветеран NASA разработал бестопливный ракетный двигатель, который работает на «новой силе»

На днях на конференции по альтернативным двигательным установкам (APEC) ветеран NASA и соучредитель компании Exodus Propulsion Technologies Чарльз Булер (Charles Buhler) заявил об открытии «новой силы», которая может приводить в движение космические корабли без выброса массы. Иначе говоря, без использования топлива или рабочего тела, если мы говорим об ионных (плазменных) двигателях. Если открытие подтвердится, это изменит космонавтику и не только.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Чарльз Булер свыше двух десятков лет проработал в NASA как специалист по электростатике. Он участвовал в проектах «Спейс Шаттл», «Хаббл» и в программах на МКС. На заре своей карьеры в агентстве Булер руководил командой разработчиков бестопливных ракетных двигателей. Создаваемый группой силовой привод основан на таком явлении, как асимметрия электростатического давления. К 2020 году всё, чего они добились — это создание тяги чуть более одной стотысячной силы тяжести на Земле. Однако к последнему времени произошёл прорыв и опытная установка смогла произвести тягу эквивалентную земному притяжению, что доказало перспективность идеи.

«Это открытие “новой силы” имеет фундаментальное значение в том смысле, что только электрические поля могут создавать устойчивое воздействие на объект и обеспечивать перемещение центра масс указанного объекта без вытеснения массы, — сказал Булер на конференции. — Существуют правила, включая сохранение энергии, но при правильном подходе можно генерировать силы, не похожие ни на что из того, что человечество делало раньше. Именно эту силу мы будем использовать для приведения в движение объектов в течение следующих 1000 лет <...> пока не будет сделано следующее открытие», — добавил он.

Ранее похожую по духу концепцию продвигала компания IVO. Она предложила бестопливные ракетные двигатели EmDrive и Quantum Drive. Её разработки себя пока никак не проявили. Ветерану NASA в этом больше доверия, но без испытания установок в реальных условиях в космосе обсуждать что-либо в этой области, вероятно, преждевременно. Но звучит захватывающе — этого не отнять.

Venus Aerospace показала полёт беспилотника с ракетным ротационным детонационным двигателем

Компания Venus Aerospace показала первый демонстрационный полёт беспилотника с ракетным ротационным детонационным двигателем (RDRE). Испытания прошли в феврале 2024 года. Ранее компания показала возможность длительной работы фирменного RDRE на стенде, что важно для создания гиперзвукового самолёта или космоплана.

 Источник изображений: Venus Aerospace

Источник изображений: Venus Aerospace

Беспилотный аппарат в виде крылатой ракеты массой 140 кг и длиной 2,4 м был сброшен с самолёта на высоте 3700 м. На двигателе на перекиси водорода беспилотник развил скорость 0,9 Маха и пролетел 16,1 км. Сообщается, что двигатель работал на 80 % тяги, поэтому задача преодолеть отметку 1 Маха не ставилась. Разгон до скорости свыше 1 Маха будет осуществлён в последующие пуски с включением ракетного ротационного детонационного двигателя, который в этот раз просто присутствовал на борту беспилотника.

«Использование платформы воздушного запуска и конфигурации "крылатая ракета" позволяет нам дёшево и быстро провести минимальные испытания нашего RDRE в качестве гиперзвукового двигателя, — сказал технический директор и соучредитель компании Эндрю Дугглби (Andrew Duggleby). — Команда отработала профессионально и располагает огромным количеством данных для привязки и настройки [системы] для следующего полёта».

Ракетный ротационный детонационный двигатель имеет ряд преимущество перед традиционными двигателями на химическом топливе. Условно он представляет собой два помещённых друг в друга цилиндра. Топливо впрыскивается в простенок между ними и воспламеняется — это может быть как непрерывный режим горения, так и импульсный (в России с 2012 года разрабатывают импульсный RDRE). В простенке после воспламенения возникает «огненный торнадо» — ударный фронт взрывной волны, что за счёт ограниченного пространства создаёт больше направленной энергии. Также двигатель RDRE будет проще в обслуживании и сможет экономить до 15 % топлива.

 Рендер будущего космоплана

Рендер будущего космоплана

В перспективе компания Venus Aerospace рассчитывает создать гиперзвуковой космоплан или самолёт, который сможет разгоняться до скорости 9 Маха и доставлять пассажиров в любую точку Земли всего за час или около того. Но это точно случится не завтра и не послезавтра. А пока можно посмотреть на видео, как летает макет беспилотника с перспективным пока двигателем.

В США создали импульсный двигатель на водяном топливе с термоядерным форсажем

Компания RocketStar сообщила, что создала и протестировала инновационную электрическую двигательную установку FireStar Drive для космических аппаратов, которая использует усиленные термоядерным синтезом импульсы плазмы. Предложенное решение значительно повышает производительность базовой импульсной установки RocketStar на водяном топливе. Прототип двигателя создан, испытан на земле и готовится к испытаниям в космосе.

 Источник изображения: RocketStar

FireStar Drive M1.5. Источник изображения: RocketStar

Созданный ранее в компании базовый двигатель генерирует высокоскоростные протоны за счет ионизации водяного пара. Когда эти протоны (полученные от водорода) сталкиваются с ядром атома бора, возникает реакция синтеза, в ходе которой атом бора превращается в высокоэнергетическую форму углерода, которая быстро распадается на три альфа-частицы. Это так называемая безнейтронная реакция синтеза, которая не создаёт сильного радиационного излучения и поэтому установку намного проще экранировать.

Бор вводится в реактивную струю газов — выбросов из работающего плазменного двигателя FireStar Drive — и в процессе реакции синтеза как бы переводит двигатель в режим форсажа или, проще говоря, значительно увеличивает тягу базового импульсного плазменного двигателя.

Компания RocketStar работает по ряду программ МО США (SBIR, AFWERX и других). Во время первого этапа работ в зону выхлопа экспериментального импульсного плазменного двигателя была введена борированная вода. Это привело к образованию альфа-частиц и гамма-лучей — явных признаков реакции ядерного синтеза. Позже совместно со специалистами лаборатории High Power Electric Propulsion Laboratory (HPEPL) в Атланте было показано, что двигатель не только создавал ионизирующее излучение, но также увеличивал тягу базовой двигательной установки на 50 %.

Созданный в компании двигатель FireStar доступен для отправки заказчикам. Он называется M1.5 и будет продемонстрирован в космосе в качестве полезной нагрузки на спутнике-носителе OTV ION компании D-Orbit, который будет отправлен в космос в ходе очередных «пакетных» миссий SpaceX Transporter в июле и октябре этого года.

«Мы очень рады возможности работать бок о бок с RocketStar и внести свой вклад в демонстрацию M1.5, — сказал Маттео Лоренцони, руководитель отдела продаж D-Orbit. — Мы только что интегрировали двигатель на спутник-носитель ION и с нетерпением ждём возможности увидеть его работу на орбите».

Планы по испытанию двигателя FireStar включают дальнейшие наземные проверки в этом году, а также ещё одну демонстрацию в космосе, запланированную на февраль 2025 года в качестве полезной нагрузки на космическом аппарате Rogue Space System Barry-2.

В Китае испытали ранний прототип ядерного ракетного двигателя для полётов на Марс

В рецензируемом журнале Scientia Sinica Technology Китайской академии наук вышла статья, в которой сообщается об успешном испытании раннего прототипа ядерного ракетного двигателя мощностью 1,5 МВт. Двигательная установка размерами с транспортный контейнер испытана без ядерного топлива с подачей тепла от внешнего источника. Целью испытаний была проверка системы теплоотвода от реактора на основе лития. Готовятся испытания с ядерным топливом.

 Источник изображений: Chinese Academy of Sciences

Источник изображений: Chinese Academy of Sciences

Очевидно, что ракету для полёта на Марс необходимо будет собирать на орбите Земли или на орбите Луны. В космос она будет подниматься по частям, что также касается ядерного реактора. При этом вопрос безопасности будет наиважнейшим, чтобы в случае аварии это не закончилось засорением земной поверхности радиоактивными материалами или чем похуже.

Создаваемый в Китае ядерный ракетный двигатель в данном исполнении (не факт, что проект будет воплощён в текущей версии) будет весить менее восьми тонн, и окажется достаточно компактным, чтобы поместиться под стандартный обтекатель штатных ракет-носителей. В космосе реактор будет развёрнут и дооснащён радиаторами охлаждения и необходимой обвязкой. В развёрнутом виде, если верить статье, он будет высотой с 20-этажный дом.

Система радиаторов из сплава на основе вольфрама будет одновременно служить экраном от радиации, возникающей в реакторе во время распада ядерного топлива. Заявлено, что температура теплоносителя в «ракетном» реакторе будет достигать 1276 °С что намного выше, чем в обычных реакторах. За счёт высокой температуры в газ из жидкой фазы будут превращаться инертные газы гелий и ксенон, которые будут вращать турбину генератора и обеспечивать высокую мощность вкупе с достаточно компактными размерами установки.

Утверждается, что китайская разработка значительно компактнее конкурирующего проекта NASA и в семь раз мощнее его. Более того, китайские учёные прогнозируют, что полёт на Марс на ракете с ядерным двигателем займёт около трёх месяцев, тогда как полёт на корабле типа Starship Илона Маска растянется на семь месяцев. Иными словами, без ракет на ядерных двигателях мечтать о регулярных полётах на Марс и обратно — это утопия, считают в Китае.

 Ядерный реактор с литиевым охлаждением и системой радиаторов-экранов высотой с 20-этажный дом

Ядерный реактор с литиевым охлаждением и системой радиаторов-экранов высотой с 20-этажный дом

Вопрос о создаваемой китайским ядерным двигателем тяге не прояснён. Это могут быть как электрические двигатели, которые разгоняют частицы реактивной массы (нейтральных газов или воды), либо двигатели на осколках деления, когда в качестве реактивной массы используются сами продукты распада. Исходя из контекста новости, речь, скорее всего, о первом случае — об электроракетных двигателях, но это не точно.

Охлаждать сверхразогретый двигатель планируется литием, как наиболее подходящим и теплоёмким для заявленных условий теплоносителем. Система отвода тепла с его помощью как раз прошла испытание на прототипе. Китайские учёные осторожны в прогнозах о создании рабочего двигателя. На это уйдут годы экспериментов и научной работы. Но к середине 30-х годов они надеются справиться. Как раз недавно глава «Роскосмоса» Юрий Борисов обмолвился, что Россия и Китай могут отправить в 2033–2035 годах на Луну ядерный реактор для лунной базы постоянного присутствия. Но это уже другая история.

В США ротационный детонационный двигатель для ракет испытали длительной работой

Несмотря на широкое распространение и надёжность ракетных двигателей на жидком и твёрдом топливе, в будущее их не пригласят. Потенциальной заменой двигателям на химическом топливе могут стать ротационные детонационные ракетные двигатели (Rotating detonation rocket engine — RDRE). Они обещают оказаться на 15 % экономичнее и будут надёжнее в эксплуатации. Но к этому ещё нужно прийти, а пока что такие двигатели проходят испытания.

 Источник изображений: Venus Aerospace

Источник изображений: Venus Aerospace

На днях Управление перспективных исследовательских проектов Министерства обороны США (DARPA) сняло гриф секретности с процедуры испытания ротационного детонационного двигателя для ракет компании Venus Aerospace. Это позволило компании представить видео испытаний двигательной установки, в ходе которого была сделана заявка на достижение значимой вехи в разработке революционного двигателя.

По словам компании, её специалистам удалось добиться длительной работы двигателя, что подойдёт как для оснащения гиперзвуковой ракеты, так и гиперзвукового самолёта. Ранее подобным достижением хвалилось NASA. Создаваемый агентством ротационный детонационный двигатель смог проработать 4 мин. Этого хватит, например, чтобы посадить спускаемый модуль на Луну. Двигатель Venus Aerospace создаётся с прицелом на длительные перелёты в пределах Земли и для выхода аппаратов на орбиту. В таких условиях RDRE должен работать намного дольше и теперь, после испытаний, можно с уверенностью двигаться к этой цели, заявили в компании.

Впрочем, подробностей нет. Вероятно это секретная информация. Компания Venus Aerospace проектирует гиперзвуковой самолёт и разработка надёжного двигателя нужна ей как воздух. Ротационный детонационный ракетный двигатель грубо можно представить как два соосных цилиндра один в другом. Топливо впрыскивается в простенок между ними и поджигается. Создаётся взрыв и вихреобразное распространение ударной волны, что существенно повышает тягу и экономит топливо.

Прорывом Venus Aerospace стала разработка системы охлаждения двигателя, которая позволяет ему особенно длительную работу. Но компания находится лишь в начале пути. И не факт, что она его пройдёт — он слишком сложен и малоизучен.

NASA испытало улучшенные двигатели, оставшиеся от шаттлов — их используют в миссиях на Луну и Марс

В январе 2024 года NASA провело подряд два испытания модернизированных двигателей RS-25, оставшихся от программы «Спейс шаттл». Модернизация призвана поднять тягу на 11 % по сравнению с базовым изделием. Доработанные таким образом двигатели начнут эксплуатироваться с миссии Artemis-5 ближе к концу текущего десятилетия. Но для этого их необходимо сертифицировать в серии из 12 огневых испытаний.

 Источник изображения: NASA

Источник изображения: NASA

Первый запуск модернизированного двигателя RS-25 состоялся в октябре 2023 года. Два новых огневых испытания прошли 17 и 23 января 2024 года. Оба раза двигатели отработали по 500 с (около 8 мин). На каждой ракете SLS будет по четыре таких двигателя, которые будут работать по 500 с. В ходе огневых испытаний улучшенных двигателей были проверены новое сопло, гидравлические приводы, гибкие воздуховоды и турбонасосы.

Первые четыре миссии «Артемида», включая одну уже выполненную с беспилотным облётом корабля «Орион» Луны и возвращением на Землю, также используют модернизированные двигатели RS-25 производства Aerojet Rocketdyne. Тяга двигателей повышена до 109 % от номинальной. Начиная с пятой миссии (ракеты) тяга будет повышена ещё на 2 % или до 111 % от номинала. На стенде NASA испытывает двигатели, нагружая их до 113 % от номинала, чтобы иметь запас прочности.

При разработке программы «Артемида» для экономии средств было решено использовать запас двигателей, оставшихся после закрытия программы «Спейс шаттл». Но на практике это вылилось в катастрофический перерасход финансирования и поставило под угрозу всю новую лунную программу США. Миссии Artemis-2 и Artemis-3 перенесены каждая на год. Полёт с астронавтами на борту корабля вокруг Луны теперь ожидается осенью 2025 года, а высадка на Луну перенесена на осень 2026 года. Что же, по крайней мере, двигатели для последующих полётов без спешки и суеты пройдут все необходимые этапы для получения сертификата.

NASA испытало самый мощный электроракетный двигатель в истории — его применят на лунной орбитальной станции

В NASA сообщили, что первый электроракетный двигатель нового поколения мощностью 12 кВт завершил квалификационные испытания. В своё время установка станет частью лунной орбитальной станции Gateway для удержания и коррекции орбиты. До этого самым мощным электроракетным двигателем была установка мощностью 4,5 кВт. Новый двигатель обеспечит полёты глубже в Солнечную систему и с более высокой скоростью.

 Источник изображения: NASA

Источник изображения: NASA

Двигатели AEPS разрабатывает и производит компания Aerojet Rocketdyne. Первый из них для станции «Лунные врата» компания доставила в испытательный центр NASA им. Гленна в Кливленде в июле этого года. Именно этот двигатель прошёл проверку в вибрационной и вакуумной камере центра. Второй двигатель будет доставлен для квалификационных испытаний в 2024 году. На нём, в частности, будут отрабатывать режимы тяги, эквивалентные выводу станции Gateway на орбиту вокруг Луны.

В испытательной камере огневой тест продлится около четырёх лет или 23 тыс. часов, что позволит проверить двигатель длительными нагрузками. На станции Gateway будет три таких двигателя. Питание им будет обеспечивать система солнечных панелей станции мощностью 60 кВт. Двигатели будут смонтированы на силовом модуле станции (PPE, Power and Propulsion Element). Модуль планируется вывести в космос в ноябре 2025 года на ракете SpaceX Falcon Heavy.

Главное преимущество электроракетных двигателей или, иначе, ионных двигателей на эффекте Холла, заключается в высочайшей эффективности. Они не могут похвастаться высокой тягой, но могут годами непрерывно работать на ограниченных запасах рабочего тела. В частности, двигатели AEPS работают на ксеноне. Одного бака на станции с 2 тоннами ксенона может хватить на 15 лет её эксплуатации. Впрочем, немецкая компания OHB сейчас занята разработкой системы дозаправки ксеноном — Xenon Transfer System (XTS). Вероятно, для продления сроков эксплуатации «Лунных врат» её будут время от времени заправлять.

Станция Gateway послужит базой для миссий на поверхность Луны и для сборки кораблей для полётов на Марс. Двигатели AEPS будут активно использоваться во всех этих миссиях, поскольку до появления атомных ракетных двигателей обещают наиболее экономичный и эффективный способ полётов вглубь Солнечной системы.

В Китае испытали первый в мире беспилотник на ротационном детонационном двигателе

Китай перешёл от стендовых испытаний ротационных детонационных двигателей к тестированию их на летающих прототипах. Это позволит создать самые разнообразные гиперзвуковые воздушные транспортные средства, от самолётов до ракет, которые к тому же будут потреблять меньше топлива.

 Источник изображения: Bilibili

Источник изображения: Bilibili

По сообщению издания South China Morning Post, двигатель FB-1 Rotating Detonation Engine (FB-1 RDE) был разработан совместно Научно-исследовательским институтом промышленных технологий Чунцинского университета и частной компанией Thrust-to-Weight Ratio Engine (TWR), расположенной в Шэньчжэне. Испытания на беспилотном самолёте длиной 5 метров прошли на неизвестном аэродроме в провинции Ганьсу.

В местных социальных сетях распространяется фотография зажжённого двигателя во время рулёжки беспилотника по полосе. Был ли двигатель FB-1 RDE испытан в полёте, не уточняется. Но сам факт создания прототипа двигателя, который разместили на летающем средстве — это настоящее событие. До сих пор было известно только о стендовых испытаниях в крайне громоздких декорациях.

Россия сообщала об испытаниях импульсных детонационных ракетных двигателей ещё в 2016 году. Китай приступил к испытаниям детонационных двигателей около пяти лет назад, а в США добились определённого успеха в испытаниях подобных двигателей в начале этого года. За столь короткое время Китай успел очень и очень удивить, начав испытывать детонационный двигатель на угле. Точнее, на смеси угольной пыли и этилена. Удивил он и сейчас, первым заявив о начале лётных испытаний воздушного судна с детонационным двигателем на борту.

Топливо в детонационном двигателе подаётся либо непрерывно, либо порциями. Российские институты, например, говорили о разработке импульсных детонационных ракетных двигателей. В США и Китае работают над ротационными детонационными двигателями, которые удобны для постоянной подачи топлива, а его детонация порождает кольцевую и закрученную как торнадо взрывную волну, фронт которой начинает распространяться в двигателе со скоростью, значительно превышающей скорость газов, образующихся при сгорании топлива в обычных реактивных двигателях.

По оценкам специалистов, детонационные двигатели смогут также экономить до 30 % топлива, развивая при этом гиперзвуковые скорости. Их другим важным преимуществом также считается способностью гибко управлять тягой от нуля до максимального уровня, что не является сильной стороной реактивных двигателей. Наконец, ротационные детонационные двигатели обещают оказаться проще в эксплуатации и обслуживании.

«Это событие стало важным шагом в реализации комплексной стратегии TWR по развитию технологий детонационных двигателей и полётов с использованием детонационных двигателей», — сообщила компания TWR в сети WeChat.

Ранее в этом году TWR сообщала, что её ротационный двигатель достиг тяги в 1000 Н. В производство он должен быть запущен в течение двух лет. Грубо говоря, это тяга в 100 кг, что не позволяет говорить о каких-либо тяжёлых воздушных аппаратах, но для беспилотников этого будет достаточно.

Создан ракетный двигатель размером с ноготь, который работает на воде

Учёные из Имперского колледжа Лондона разработали крошечный ракетный двигатель ICE-Cube Thruster (Iridium Catalysed Electrolysis CubeSat Thruster) на катализируемом иридием электролизе. Он настолько мал, что для его изготовления используется метод, который применяется при выпуске полупроводниковых чипов. Двигатель предназначен для компактных спутников — кубсатов (CubeSat).

 Источник изображения: Imperial College / ESA

Источник изображения: Imperial College / ESA

Как пишет портал New Atlas, поскольку до 90 % космических запусков приходятся на вывод на околоземную орбиту кубсатов весом до 10 кг, многие из них имеют размеры не больше обычного смартфона. Для таких космических аппаратов очень сложно создавать компоненты нужного размера. И одной из таких проблем является создание ракетных двигателей с учётом физических ограничений таких спутников. В этом случае двигатели должны быть не только маленькими, но также максимально простыми, не вакуумными, маломощными и в них не должны применяться токсичные материалы.

Длина всего двигателя ICE-Cube Thruster, разработка которого была профинансирована Европейским космическим агентством, составляет примерно 2 сантиметра, а длина его камеры сгорания и сопла составляет всего 1 мм. Для работы ему требуется всего 20 Вт электрического тока. В ходе испытаний двигатель генерировал тягу в 1,25 миллиньютон при удельном импульсе 185 секунд на постоянной основе. Для сравнения, это в полмиллиарда раз меньше тяги двигателей, использовавшихся в космических шаттлах.

Однако уникальность этого микродвигателя не в силе тяги, а в том, что в качестве топлива он использует обычную воду, которая настолько невзрывоопасна и негорюча, насколько это возможно. С помощью электрического тока проходит электролиз, вода расщепляется на водород и кислород, которые подаются в камеру сгорания для воспламенения, создавая тягу для маневрирования спутника.

Использование воды не только очень экологично, но и снижает общую массу аппарата, поскольку для её хранения и подачи не требуется использования сложных систем. Однако изготовление камеры сгорания и сопла для двигателя, по существу, в двух измерениях, потребовало обращения к микроэлектронике и методу микроэлектромеханических систем (MEMS), который обычно используется для обработки кремниевых пластин для производства чипов с точностью меньше микрометра.

В NASA испытали первые ракетные двигатели для старта с другой планеты — они помогут доставить образцы с Марса

NASA сообщило о первых огневых испытаниях ракетных двигателей, предназначенных для пуска с другой планеты. В районе 2030 года вооружённая этими двигателями двухступенчатая ракета будет стартовать с поверхности Марса, чтобы впервые доставить на Землю образцы грунта иной планеты. Изучение образцов на Земле поможет ответить на главную загадку Марса: была ли на нём жизнь, и что с ней могло произойти?

 Источник изображений: NASA

Источник изображений: NASA

Запуск миссии Mars Sample Return запланирован на июнь 2028 года. Генеральная защита проекта ракеты состоится летом следующего года. На сегодня испытаны отдельные элементы программы, включая конструкции двигателей первой и второй ступени.

Проектированием твердотопливных двигателей SRM1 и SRM2 по контракту с NASA занимается компания Northrop Grumman Systems. Саму возвращаемую ракету Mars Ascent Vehicle (MAV) проектирует и будет изготавливать компания Lockheed Martin. Ракета прибудет на Марс на посадочном модуле. Полёт займёт около двух лет. Загрузка образцов с ровера в ракету Perseverance будет продолжаться около года. Если марсоход к этому времени сгинет в песках Красной планеты, образцы к ракете из хранилища на открытом воздухе доставит вертолёт (раньше для этого хотели использовать ровер).

К двигателям ракеты для возвращения образцов с Марса предъявляются особые требования. Так, двигатель первой ступени должен нести морозоустойчивые дюзы, что ещё не было испытано на практике. Первые огневые испытания двигателя и дюз при температуре -20 °C в вакуумной камере показали, что инженеры на правильном пути.

Двигатель второй ступени тоже будет необычным. Для стабилизации полёта и для вывода ракеты на нужную орбиту он будет вращаться вокруг своей оси. Очень нетривиальное решение! И испытания подтвердили выбранные для его изготовления конструкторские решения.

На очереди испытания других узлов и компонентов программы. Остаётся надеяться, что финансовые проблемы NASA не остановят этот проект.

Ракету с атомным двигателем для полёта на Марс будет создавать Lockheed Martin — демонстрация в космосе состоится в 2027 году

NASA объявило, что генеральным подрядчиком по проектированию, созданию и испытаниям демонстрационной ракеты с атомным двигателем выбрана компания Lockheed Martin. Кроме неё в проекте участвует целый ряд компаний, включая BWX Technologies, которая проектирует атомный тепловой двигатель. Задачей Lockheed Martin станет собрать всё это в виде демонстрационной ракеты и запустить в космос уже через четыре года.

 Источник изображения: DARPA

Источник изображения: DARPA

Атомный тепловой двигатель подразумевает разогрев рабочего тела энергией деления ядер. Чаще всего рассматривается разогрев водорода, который может быть в жидком или газообразном состоянии. Атомные тепловые двигатели обещают оказаться от двух до пяти раз лучше по тяге, чем современные химические ракетные двигатели, и они в десятки тысяч раз мощнее, чем электрические двигатели на ионной тяге. Например, с помощью ракеты на атомном двигателе NASA рассчитывает в два раза сократить доставку астронавтов на Марс, что сохранит им здоровье во время полёта в пустоте с сильнейшей радиацией.

Компания Lockheed Martin будет отвечать за интеграцию двигателя и других компонентов в ракету, за проектирование ракеты и изготовление демонстратора, а также за запуск демонстратора в 2027 году. Проектированием атомного теплового двигателя занимается компания BWX Technologies. Ранее для этих целей NASA и DARPA заключали контракты с компаниями Blue Origin, Gryphon Technologies и General Atomics.

Добавим, все контракты и проекты ведутся в целях программы DRACO (Demonstration Rocket for Agile Cislunar Operations), представленной DARPA в 2020 году. У военных США большие планы относительно атомных ракетных двигателей. В частности, такие «долгоиграющие» двигатели необходимы для постоянного патрулирования военными США пространства Земля-Луна. К 2030 году и позже ожидается оживлённое движение кораблей в области до и за Луной, и армия США надеется присутствовать там в полном объёме, чтобы гарантировать безопасность научных и коммерческих миссий.

«Сотрудничество с DARPA и компаниями коммерческой космической отрасли позволит нам ускорить разработку технологий, необходимых для отправки людей на Марс, — сказала заместитель администратора NASA Пэм Мелрой (Pam Melroy). — Эта демонстрация станет важнейшим шагом на пути к достижению наших целей по доставке экипажа в дальний космос с Луны на Марс».

NASA выделяет до $300 млн на реализацию проектов по программе DRACO. В эту сумму входят затраты на проектирование и разработку ядерного двигателя в размере до $250 млн, а также технический надзор и экспертиза со стороны сотрудников агентства.


window-new
Soft
Hard
Тренды 🔥
«Не думаю, что Nintendo это стерпит, но я очень рад»: разработчик Star Fox 64 одобрил фанатский порт культовой игры на ПК 7 ч.
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 8 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 11 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 12 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 12 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 13 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 14 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 14 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 15 ч.
Мошенники придумали, как обманывать нечистых на руку пользователей YouTube 16 ч.