Сегодня 06 октября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → реакторы
Быстрый переход

Элитные яхты станут атомными, и это лишь вопрос времени

Крупнейшее в мире сертификационное общество — Lloyd's Register — опубликовало отчёт о перспективах перехода суперъяхт на атомные силовые установки. Этого требует климатическая повестка и здравый рассудок, считают в ассоциации, которая задаёт тон судопроизводству и судоходству во всём мире. Военно-морской флот ведущих стран свыше 70 лет используют атомные силовые установки на подводных лодках, так что это проверенная временем и безопасная технология.

 Источник изображений: Feadship

Яхта Проекта 821 на водородных топливных ячейках. Следующая атомная? Источник изображений: Feadship

Очевидным эффектом от перехода на атомную энергию в сфере элитного яхтинга станет прекращение парниковых выбросов от сжигания двигателями яхт дизельного топлива. Острота проблемы подчёркивается тем, что небольшая, в общем-то, прослойка сверхбогатых граждан на суперъяхтах вносит значительный вклад в увеличение температуры Земли. Но, как отмечают в отчёте аналитики Lloyd's Register, выгод от перевода яхт на атомные силовые установки заметно больше одной.

Во-первых, атомный привод и запас топлива для него будут занимать на яхте ощутимо меньше места, чем запас дизельного топлива и соответствующая силовая установка. Даже оснащение яхт новомодными водородными ячейками и запасом сжатого водорода не избавляет от необходимости содержать дизельную установку и запас топлива для длительных переходов. Освобождение пространства на яхтах от запасов дизеля и двигателей предоставит больше места для удобств пассажирам.

Во-вторых, атомное топливо на основе урана может десятилетиями вырабатывать мощность без замены. С учётом опыта подводных лодок, перезагрузка может потребоваться раз в 30 лет. Это даёт возможность не только экономить на затратах на топливо в долгосрочной перспективе (в краткосрочной оно будет дороже заправки дизелем), но также обеспечит свободное передвижение по всем морям и океанам без необходимости куда-то заходить на дозаправку.

«Атомная энергия обладает потенциалом для таких же преобразований в судоходстве, как переход от дерева к железу или от парусов к пару, — сказал Энгель-Ян де Бур (Engel-Jan de Boer), директор мирового яхтенного сегмента Lloyd's Register, в пресс-релизе. — В отличие от альтернативных видов топлива, которые могли бы служить прямой заменой традиционным системам, работающим на мазуте, атомная энергетика представляет собой фундаментальный сдвиг, который может изменить яхтинг класса люкс».

Вопрос, на который необходимо ответить, заключается в том, когда яхты должны перейти на такую силовую установку. Согласно отчёту, владельцы яхт разделились во мнениях относительно того, следует ли вносить эти изменения до конца десятилетия или внедрять их в течение более длительного периода после того, как разрабатываемые технологии достигнут определенной зрелости. Например, когда начнётся сертификация и внедрение малых модульных реакторов. В любом случае, создаётся впечатление, что появление атомных силовых установок для яхт — лишь вопрос времени.

Westinghouse готова к массовому производству атомных микрореакторов eVinci

Westinghouse Electric выполнила операции, необходимые для начала массового производства передовых атомных микрореакторов eVinci. Она подала пакет документов в Комиссию по ядерному регулированию США (NRC), чтобы ускорить одобрение заявки на начало массового производства установок. По планам Westinghouse, уже к началу 2030 года в мире будет установлено множество микрореакторов компании, которые помогут обеспечить климатические изменения.

 Источник изображений: Westinghouse Electric

Источник изображений: Westinghouse Electric

Компактные атомные реакторы должны стать более предпочтительной альтернативой строительству полномасштабных атомных энергоблоков. Малые реакторы — это почти как батарейки. Они легко заменяются на новые или простым образом перезагружаются, поскольку достаточно компактные, чтобы поместиться в стандартный транспортный контейнер для отправки на завод по восстановлению и обратно. Разовой загрузки безопасным ядерным топливом хватит на более чем 8 лет работы реактора, после чего его можно будет заменить на такой же, либо загрузить в него новое топливо.

Внешний диаметр микрореактора Westinghouse eVinci — меньше 3 м. Обслуживающий реактор комплекс строится в кратчайшие сроки — за год или меньше на скромной площади около 8000 м2. Всё располагается на поверхности с минимальным числом обслуживающего персонала, которому не будет требоваться особая квалификация. Большую часть работы будет делать автоматика. Задача людей — следить за общей обстановкой на площадке.

Микрореактор eVinci — это предельно простая конструкция, не имеющая движущихся частей. Тепло от распада ядерного топлива передаётся монолитной стальной станине, от которой оно пассивно отводится с помощью тепловых трубок, заполненных щелочными металлами. Почти как в случае охлаждения процессора кулером на тепловых трубках. Затем тепло утилизируется в генераторе электричества и в системе обогрева помещений. Возможность аварии и утечки радиоактивного вещества сведена к минимуму или даже вовсе исключена.

Тепловая мощность реактора eVinci достигает 15 МВт. Его электрическая мощность составляет 5 МВт. Это источник тепла и электричества для небольших городков, удалённых военных баз, ЦОД, геологических партий и удобный буфер для электростанций на возобновляемых источниках энергии. При разработке микрореактора компания Westinghouse использовала «космические» технологии и также рассчитывает, что реакторы eVinci или его последователи продолжат работу за пределами атмосферы Земли — на Луне, Марсе и в открытом космосе.

Но космос — это следующий этап. Пока Westinghouse намерена захватить значительную долю рынка микрореакторов на Земле. Есть договорённости о размещении этих установок в Канаде и в Восточной Европе. Дело за малым — получить необходимый пакет документов от национального регулятора. Поданный на днях регулятору «Предварительный отчет о проекте безопасности» (PSDR) для микрореактора eVinci стал важной вехой на пути к коммерциализации этой установки. Дальше будет разрешение и начало производства установок, которые должны быстро появиться во многих частях нашей планеты.

Британский тинейджер построил первый в мире школьный термоядерный реактор и получил в нём плазму

Старшеклассник Кардиффского колледжа в Великобритании создал первый в мире школьный термоядерный реактор, который смог получить плазму. Самым сложным было убедить учителей в безопасности проекта, когда он пришёл к ним с этим предложением. После полутора лет работы и с затратами чуть выше $10 тыс. проект был воплощён в железе и добыл первую плазму.

 Школьный инерциальный электростатический термоядерный реактор. Источник изображения: Cesare Mencarini

Школьный инерциальный электростатический термоядерный реактор. Источник изображения: Cesare Mencarini

Разработку настольного термоядерного реактора предложил 17-летний Чезаре Менкарини (Cesare Mencarini). Работа выполнялась в рамках двухлетней образовательной программ A-Levels, которая даёт возможность подготовиться для поступления в высшие учебные заведения страны или зарубежные. Первой реакцией преподавателей на предложение построить в школе термоядерный реактор было беспокойство о последствиях его запуска. Также студент затребовал значительную сумму на расходы — £20 тыс. В итоге он получил разрешение и всего £8 тыс., что заставило серьёзно поработать над оптимизацией конструкции реактора.

Источники и сам проектировщик не сообщают о параметрах достигнутой в реакторе плазмы (она была получена в июне 2024 года). Заявлено только о достижении разрежения в рабочей камере на уровне 0,008 мм ртутного столба с помощью вакуумного насоса TRIVAC D 2.5 E и о подаче питания напряжением 30 кВ от источника питания Unilab мощностью 5 кВ. Поскольку токи там предельно слабые, школьная электропроводка не рисковала пострадать.

 Плазма

Плазма в рабочей камере школьного реактора

Созданный школьником реактор был показан на Кембриджском фестивале науки, где получил высокую оценку и заслуженный интерес посетителей. В мире, где все начинают кичиться цифровыми достижениями, представить что-то материальное и из ряда вон выходящее — такое дорогого стоит.

С другой стороны, созданный Чезаре реактор не является чем-то исключительным. Это так называемый фузор. В Книге рекордов Гиннеса есть свой рекордсмен по созданию термоядерных реакторов (фузоров) — это американский школьник Джексон Освальт, получивший первую плазму в 12 лет.

Майонез помог учёным в изучении термоядерного синтеза

Группа учёных из Лихайского университета (Lehigh University) в штате Пенсильвания несколько последних лет использует для моделирования неустойчивости плазмы на границе раздела сред обычный майонез. Его поведение достаточно точно имитирует физику топливных капсул в ходе реакции инерциального управляемого термоядерного синтеза. Новая работа учёных посвящена изучению фаз неустойчивости плазмы на основе наблюдений за поведением майонеза на стенде.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Как известно, инерциальный управляемый термоядерный синтез опирается на удар лазерами (или током) по топливной капсуле в центре мишени. Около двух лет назад на установке NIF в США впервые получили больше энергии на выходе, чем понадобилось для запуска термоядерной реакции. Тем не менее, реакция бомбардировки капсулы с топливом дейтерий-тритий не всегда проходит гладко. Она может взорваться не успев дать плазме прореагировать. Часть топлива успевает превратиться в газ (плазму), а часть остаётся в жидком состоянии. Майонез позволяет воссоздавать похожие процессы, которые поддаются упрощённому и безопасному анализу без постановки дорогостоящих экспериментов.

«Мы всё еще работаем над той же проблемой, которая заключается в [изучении] структурной целостности термоядерных капсул, используемых в термоядерном синтезе с инерционным удержанием, и настоящий майонез Hellmann's по-прежнему помогает нам в поиске решений», — сказал Ариндам Банерджи (Arindam Banerjee), профессор машиностроения и механики в Лихайском университете и заведующий кафедрой термоядерного синтеза.

«Мы используем майонез, потому что он ведет себя как твердый продукт, но при воздействии перепада давления он начинает течь, — поясняют авторы работы. — Использование соуса также устраняет необходимость в высоких температурах и давлении, которые чрезвычайно трудно контролировать».

Для своих экспериментов с майонезом исследователи создали специально изготовленное и единственное в своём роде вращающееся колесо, чтобы имитировать условия течения плазмы. Как только ускорение превышало критическое значение, майонез начинал течь. В частности, учёные выяснили, что майонез ещё до начала неустойчивости проходил через несколько фазовых состояний. По мере приложения усилия к нему он становился податливым и затем переходил в стабильную пластичную фазу. На следующем этапе воздействия майонез начинал течь, и именно тогда возникала неустойчивость.

По словам учёных, понимание перехода между упругой фазой и стабильной пластичной фазой имеет решающее значение, поскольку знание того, когда начинаются пластические деформации, может подсказать исследователям, когда наступит нестабильность. В новой работе учёные пытались контролировать состояние майонеза, чтобы он оставался в пределах этой эластичной или стабильно пластичной фазы. Иначе говоря, чтобы «плазма» оставалась в устойчивом состоянии и не грозила бы неконтролируемым взрывом топливной капсулы.

Работа помогла измерить условия для восстановления устойчивого состояния плазмы, что стало первой работой в мире на эту тему. Другой вопрос, как соотнести полученные на майонезе результаты с настоящей плазмой в термоядерном реакторе? На него у учёных пока нет однозначного ответа. Но они над этим работают.

В США стартовало строительство первого в стране атомного реактора четвёртого поколения

Компания Kairos Power сообщила, что приступила к строительству первого за 50 лет в США атомного реактора, работающего не на воде, а на расплаве солей. Установка в виде демонстратора будет построена к 2028 году в Ок-Ридже, штат Теннеси. Реактор не будет вырабатывать электрическую энергию — он послужит основой для проектирования полноценной атомной электростанции четвёртого поколения.

 Принцип работы установки с реактором Hermes. Источник изображения:

Принцип работы установки с реактором Hermes. Источник изображения: Kairos Power

Строительные работы начались 17 июля 2024 года, о чём компания сообщила на днях. Параллельно с ядерным объектом Hermes там же будет создан неядерный демонстратор ETU 3.0 для обкатки технологий и конструктивных решений без риска получить облучение. Реактор Hermes стал первым реактором четвёртого поколения, который получил разрешение на строительство от национального регулятора. Близкий ему по духу реактор четвёртого поколения компании TerraPower Билла Гейтса всё ещё ждёт такого разрешения.

Реактор Hermes в своей основе похож на запущенный в Китае ещё в 2022 году высокотемпературный газоохлаждаемый реактор с галечным слоем (HTR-PM). Только галечный слой в американском реакторе будет охлаждаться не гелием, а расплавом фторидных солей. По мнению американских инженеров, это безопаснее и эффективнее с сохранением всех остальных преимуществ реакторов с галечным слоем, включая самостоятельную (пассивную) стабилизацию активной зоны реактора в случае аварии.

 Схема реактора

Схема реактора

Топливом для такого реактора служит «галька» — шарики диаметром около 6 см с маковым зёрнышком уранового топлива внутри (это так называемые микротвэлы TRISO). Свежие шарики засыпаются в бункер активной зоны сверху и постепенно отбираются снизу после выгорания топлива. Теплоносителем в таком реакторе служат расплавы солей. Они передают тепло (585 °C) во второй контур реактора, тоже солевой, а тот нагревает воду и превращает её в пар для вращения турбины и получения электричества.

В случае аварии и отказа помпы для прокачки расплава через активную зону реактора, расплав в процессе естественной конвекции охлаждает реактор, а реакция распада автоматически затухает за счёт эффекта доплеровского уширения. Недавно в Китае провели эксперимент по имитации аварии на реакторе HTR-PM. Температура и реакция в активной зоне сами собой стабилизировались через 35 часов, а реакция распада топлива начала снижать интенсивность уже через несколько минут. Аналогичным образом будет вести себя в случае аварии американский реактор с галечным слоем.

«Hermes — ключевой шаг на пути к внедрению передовых реакторных технологий, способных изменить наш энергетический ландшафт, — сказал Майк Лауфер (Mike Laufer), генеральный директор и соучредитель Kairos Power. — Уроки, которые мы извлечём из строительства и эксплуатации этого реактора, будут бесценны для продолжения инноваций в нашей программе испытаний и ускорения прогресса Kairos Power в направлении обеспечения подлинной определенности затрат для наших клиентов».

Добавим, строительство установки Hermes поддержано грантом Министерства энергетики США на сумму $303 млн. Его завершение ожидается в 2027 году.

Учёные из США на порядок повысили плотность плазмы в термоядерном реакторе, но до конца не поняли как

Физики Висконсинского университета в Мэдисоне сообщили о знаковом достижении — они сумели на порядок увеличить плотность плазмы в термоядерном реакторе типа токамак. Ранее это считалось невозможным, поскольку существует предел для этой величины. По крайней мере, немыслимо было мечтать о 10-кратном превышении порога, что также ведёт к увеличению выхода энергии рукотворной термоядерной реакции.

 Madison Symmetric Torus. Источник изображения:

Madison Symmetric Torus. Источник изображения: University of Wisconsin-Madison

Справедливости ради отметим, что учёные из Висконсина провели работу на университетском реакторе Madison Symmetric Torus (MST). Эта установка отличается от классического токамака управлением и рядом особенностей конструкции и, наверное, ближе к стеллараторам, чем к токамакам. Точное название этого типа токамака — пинч с обращённым полем (Reversed Field Pinch). Установка RFP изначально обеспечивает повышенную по сравнению с классическими токамаками плотность плазмы, но сути открытия это не меняет. Учёные смогли в 10 раз повысить плотность плазмы внутри рабочей камеры и могут помочь распространить свой метод на другие типы токамаков.

Предел плотности плазмы в рабочей камере токамака называют пределом Гринвальда. Эта величина получена опытным путём и не до конца обоснована теорией. Учёные из Висконсина считают ключом к своему успеху два момента: особенность конструкции токамака MST (прежде всего, более толстые стенки рабочей камеры, что стабилизирует магнитные поля в рабочей зоне), а также особенный источник питания, который допускает регулировку на основе обратной связи (опять же, решающее значение для стабильности).

«Максимальная плотность, по-видимому, устанавливается аппаратными ограничениями, а не нестабильностью плазмы», — пишут исследователи. Две ключевые характеристики токамака MST, похоже, сыграли в этом открытии решающую роль, которую ещё предстоит изучить и объяснить.

«Остаются вопросы о том, почему, в частности, MST способен работать с превышением порога Гринвальда и до какой степени эта способность может быть расширена до более высокопроизводительных устройств», — делятся учёные в статье в журнале Physical Review Letters. Ответы на эти вопросы, надо полагать, способны приблизить тот светлый миг, когда на Земле зажжётся «искусственное Солнце». И хорошо, если учёные будут понимать, почему и как это происходит без догадок и белых пятен в теории и на практике.

В Китае построят первую в мире атомную электростанцию на расплаве солей тория

Три года назад в Китае был построен первый в мире атомный реактор на расплаве солей тория. Его тепловая мощность составила 2 МВт. Электричество он не производил. Эксперимент оказался удачным, что создало основу для строительства в Китае первой в мире АЭС на расплаве солей тория. Строительство АЭС и реактора тепловой мощностью 60 МВт стартует в 2025 году. Он сможет вырабатывать 10 МВт электрической мощности, что станет первым таким решением в мире.

 Источник изображения: Chinese Academy of Sciences

Источник изображения: Chinese Academy of Sciences

Первый экспериментальный реактор на жидкосолевом расплаве тория был построен в США около 60 лет назад. Решение было интересным, но сложным в эксплуатации по причине высочайшей коррозии труб для транспорта солевого расплава. В США нашли это решение невыгодным и вскоре демонтировали реактор. Но выгодные стороны жидкосолевых реакторов тоже никуда не делись.

Топливо в реакторы на расплаве солей подаётся в смеси с хладагентом, которым являются сами расплавы. Такой реактор не сможет взорваться во время аварийной остановки подобно реактору на воде. Соль просто остынет без значительного выброса радиоактивного вещества, даже если возникнет прорыв первого контура. До сих пор массовое производство подобных реакторов останавливало отсутствие устойчивых к окислению при высокой температуре материалов. Построив и начав эксплуатацию 2-МВт реактора в пустыне Гоби (примерно в 120 км к северо-западу от города Увэй, провинция Ганьсу), Китай доказал, что на этом направлении возможен прорыв.

На практике были испытаны некоторые революционные технологии, включая жаропрочные сплавы, способные противостоять высоким температурам, радиации и химической коррозии. Этот небольшой реактор получил разрешение на эксплуатацию от Управления ядерной безопасности Китая в июне прошлого года и в октябре достиг критической (устойчивой) цепной ядерной реакции.

Новый и более мощный ториевый реактор тепловой мощностью 60 МВт и электрической 10 МВт будет построен недалеко от первого реактора на площадке размерами меньше футбольного поля. Расплав с топливом после прохождения активной зоны реактора будет нагревать второй контур тоже с солевым расплавом. Второй контур будет приводить в действие турбину, используя для этого углекислый газ.

Завершение строительства объекта и его сдача в эксплуатацию ожидается в 2029 году. Для Китая будет иметь немаловажное значение использование тория в качестве основного компонента топлива (туда всё равно придётся добавлять уран или другие радиоактивные материалы) — его запасов в стране хватит на 20 тыс. лет эксплуатации атомных станций на расплавах солей, тогда как своего урана у Китая на всё не хватает.

В США, кстати, тоже пытаются на новом уровне возродить тот древний проект. Этим занята компания TerraPower Билла Гейтса, которая строит реактор на расплаве солей натрия.

Запуск термоядерного реактора ИТЭР отодвинули на 2039 год — бюджет раздуется ещё на $5,4 млрд

Испытания международного термоядерного экспериментального реактора (ИТЭР) будут отложены на годы, а затраты возрастут на $5,4 млрд. Это нанесёт новый удар по и без того невероятно дорогому крупнейшему в мире эксперименту по термоядерной энергетике. Согласно первоначальному плану, первую плазму на ИТЭР, который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным.

Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, также выявлены дефекты сварки в трубах системы охлаждения. Эти проблемы вынуждают усомниться, что термоядерный синтез, как источник безграничной чистой энергии, будет запущен на ИТЭР в обозримом будущем.

Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. «Конечно, задержка ИТЭР идёт не в правильном направлении, — заявил Барабаски во время сегодняшнего брифинга. — Что касается влияния ядерного синтеза на проблемы, с которыми сейчас сталкивается человечество, нам не следует ждать, пока ядерный синтез решит их. Это неразумно».

Ранее Барабаски уже сообщил, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год, а полноценные испытания реактора теперь начнутся не раньше 2039 года, что на четыре года отстаёт прежних прогнозов.

 Источник изображения: ITER

Источник изображения: ITER

Уже второй раз за восемь лет ИТЭР приходится пересматривать свой бюджет и сроки. Первоначально планировалось, что стоимость проекта составит около $5 млрд, а испытания начнутся в 2020 году. На сегодняшний день бюджет превысил $22 млрд, а дата испытаний не установлена. Дополнительные расходы, по словам Барабаски, составят около $5,4 млрд.

Задержка ИТЭР может привести к тому, что на первый план выйдут термоядерные проекты, финансируемыми из частных источников. Компании Commonwealth Fusion Systems и Tokamak Energy используют меньшие версии такого же реактора и планируют начать испытания прототипов в этом десятилетии.

 Источник изображения: Culham Centre for Fusion Energy

Источник изображения: Culham Centre for Fusion Energy

Барабаски «очень скептически относится» к тому, что любые стартапы, обещающие коммерческую эксплуатацию к 2040 году, смогут достигнуть своих целей. «Даже если бы сегодня нам удалось запустить термоядерный синтез, я не верю, что мы сможем осуществить его коммерческое внедрение к 2040 году, — сказал он. — Нам придётся решить ряд других технических проблем, чтобы сделать его коммерчески жизнеспособным».

Rolls-Royce рассказала о разработке мобильного микрореактора — до 10 МВт в любой точке Земли и не только

Британская компания Rolls-Royce представила первые детали о своём микрореакторе следующего поколения, который будет сочетать инновационные технологии и урановое ядро, окружённое множественными защитными слоями. Разработка может кардинально изменить подход к производству энергии.

 Источник изображений: Ralls-Royse

Источник изображений: Rolls-Royse

Согласно информации, предоставленной компанией на своём веб-сайте, микрореакторы, как и малые модульные реакторы (SMR), используют передовые ядерные технологии, являясь частью «ядерного портфеля» Rolls-Royce. Однако предназначены эти системы для разных задач.

Как сообщает издание Tweak Town, микрореактор Rolls-Royce сможет генерировать от 1 до 10 МВт энергии, а благодаря своей компактности станет мобильным источником питания. Система поместится всего в нескольких транспортных контейнерах, так что, по сути, можно говорить о передвижном современном ядерном генераторе. Компания сравнивает его с малым модульным реактором, который вырабатывает 0,5 ГВт мощности и работает со стационарной площадки размером примерно с два футбольных поля.

Подчёркивается, что микрореактор предложит высокую удельную мощность, которая позволит ему эффективно, гибко и устойчиво обеспечивать широкий спектр операционных потребностей. Он сможет обеспечивать подачу электроэнергии и тепла по требованию. При этом ключевым преимуществом является его масштабируемость, благодаря которой агрегат легко можно транспортировать по железной дороге, морем и даже отправить в космос, делая его универсальным и надёжным источником энергии. В нём будет применяться безопасное топливо, а внутри ядра каждая порция урана окружена несколькими защитными слоями, что позволяет выдерживать даже самые экстремальные условия.

Rolls-Royce предлагает четыре сценария применения своей разработки: для обороны, для обеспечения энергетической безопасности в отдалённых гражданских районах, для промышленных зон и в космосе. Любой из этих сценариев может стать «переломным для нашей цивилизации», считает компания.

Также микрореактор может быть использован для центров обработки данных искусственного интеллекта, которые потребляют невообразимое количество энергии. Те же полупроводниковые компании, такие как TSMC и Intel, смогут использовать реактор для решения массы проблем, связанных с электроэнергией и подачей воды для охлаждения оборудования, что, в целом, открывает новые возможности для развития технологий.

В Китае создали первый в мире термоядерный реактор на высокотемпературной сверхпроводимости

Молодая китайская компания Energy Singularity, основанная в 2021 году, завершила создание и приняла в эксплуатацию первый в мире термоядерный реактор типа токамак на катушках с высокотемпературной сверхпроводимостью. Новое решение позволяет создавать крайне компактные и поэтому недорогие коммерческие термоядерные реакторы и электростанции.

 Источник изображений: Energy Singularity

Источник изображений: Energy Singularity

Утверждается, что размеры инновационного реактора составляют всего 2 % от установок на обычных сверхпроводящих катушках. На новом реакторе под названием HH70, размещённом в восточном районе Шанхая, будут проверены основные наработки, что позволит создать к 2027 году опытный реактор следующего поколения, а к 2030 году демонстратор термоядерной электростанции.

В качестве материала для сверхпроводящих катушек используется относительно дешёвое соединение ReBCO (редкоземельный оксид бария-меди). В Китае научились выпускать ленту из ReBCO в массовых количествах. Она востребована для маглевов будущего и не только. Токамаки, как видим, тоже выиграют от перехода на сверхпроводящие магниты.

Следующее поколение опытного реактора Energy Singularity должно выйти на показатель эффективности 1:10, выработав в 10 раз больше энергии, чем пошло на разогрев плазмы. Если этот показатель будет достигнут, то первый демонстратор термоядерной электростанции в исполнении Energy Singularity появится через каких-то пять лет, что пока воспринимается как фантастика.

Запуск «искусственного Солнца» официально отложен — первые операции на термоядерном реакторе ИТЭР перенесли на 2035 год

Вчера был последний день заседания Совета ИТЭР, в ходе которого были определены новые временные рамки ключевых этапов реализации проекта по строительству масштабного термоядерного реактора. Задержки могут составить до 10 лет. Это сделает проект дороже, но в целом не повлияет на достижение поставленных десять лет назад задач — зажечь на Земле «искусственное Солнце» и получить почти бесконечный источник чистой энергии.

 Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Согласно первоначальному плану, первую плазму на реакторе ИТЭР (ITER), который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным. Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, что теперь приходится исправлять, а также выявлены дефекты сварки в охлаждающих трубах кожуха вакуумной камеры, что вынудило менять десятки километров труб.

Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. Более подробный отчёт и новые даты этапов ввода реактора в строй гендиректор проекта озвучит в июле на брифинге. Пока же он заявляет, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год. Ранее на этот год были запланированы первые полноценные термоядерные реакции на установке на дейтерий-тритиевом топливе.

Новые сроки не означают, что все научные операции на проекте сдвинуты на десять лет. Эксперименты с малыми токами плазмы начнутся раньше по мере сборки реактора. Вероятно также, что первая плазма начнёт генерироваться раньше 2035 года. В конечном итоге задача ИТЭР — набить как можно больше шишек, чтобы на его примере постройка всех последующих коммерческих реакторов шла как можно глаже. Все страны-участницы проекта, представленные на Совете ИТЭР, с этим безоговорочно согласились.

Реактор ИТЭР не предназначен для генерации электрического тока. Эта задача будет возложена на другой международный проект — DEMO, который подразумевает постройку уже электростанции на термоядерном реакторе типа токамак. В задачи ИТЭР входит доказательство концепции — работы масштабного термоядерного реактора по схеме токамака. В идеале реактор должен выдавать мощность 500 МВт не менее 400 с без перерыва при потреблении 50 МВт непосредственно на нагрев плазмы. Вспомогательные структуры реактора при этом могут дополнительно потреблять 300 МВт, но для опытной установки это мелочи. Выход энергии всё равно будет положительным. Жаль только, что он опять откладывается.

В США начали строить первую в мире АЭС на малом реакторе TerraPower — проект финансирует Билл Гейтс

На днях в штате Вайоминг начались работы по перестройке старой угольной электростанции в АЭС на малом реакторе на расплаве солей. Это первый в мире проект такого рода: малый и модульный реактор, который заменит собой угольную электростанцию. Проект реализует компания TerraPower, главным инвестором которой является Билл Гейтс (Bill Gates). Лицензия на строительство АЭС пока не выдана, но это не помешало начать работы по проекту.

 Источник изображений: TerraPower

Источник изображений: TerraPower

Национальный регулятор США близок в выдаче лицензии на реактор Natrium. В компании TerraPower не стали дожидаться окончательного решения и приступили к работе над инфраструктурой объекта и к некоторым базовым «неядерным» работам. На пике строительства объект обеспечит до 1600 рабочих мест. После ввода АЭС в строй, что ожидается к концу этого или в начале следующего десятилетия, около сотни сотрудников угольной электростанции будут приняты на работу на новом объекте. Всего обслуживание реактора и АЭС потребует около 250 человек персонала.

 Энергетический блок (остров) начнут строить в 2025 году

Энергетический блок (остров) начнут строить в 2025 году

В своём блоге Билл Гейтс пояснил, что реактор на расплаве солей натрия (проект Natrium) намного безопаснее и эффективнее традиционных водных реакторов. Расплав солей может без последствий поглотить любые излишки тепла от распада радиоактивного топлива, тогда как вода в данных условиях привела бы к взрыву пара. В случае аварии расплав солей просто остынет, к тому же, его не нужно перекачивать, он течёт практически сам. Наконец, буферная ёмкость для расплава соли позволяет держать в резерве излишки мощности, а это поможет компенсировать, например, колебания поставок солнечной и ветряной энергии.

Проект в штате Вайоминг подразумевает создание установки мощностью 345 МВтэ (электрической мощности). Буфер будет содержать расплав, достаточный для выработки 500 МВтэ. Температура солевого теплоносителя достигнет 900 °C. Во всём этом есть только одна проблема. Топливо HALEU для реактора Natrium и других перспективных установок приходится закупать в России. К запуску Natrium США надеется уйти от этой зависимости. По крайне мере, TerraPower с партнёрами начала процессы по созданию в США производства топлива для своих и подобных реакторов. О производстве самого сырья HALEU в США в достаточных объёмах пока не сообщается.

Топливо для ядерных реакторов США нового поколения легко превратить в оружие, предупредили учёные

Американская некоммерческая организация «Союз заинтересованных ученых» (UCS) провела анализ топлива HALEU или металлического высокопробного низкообогащённого уранового топлива, которое рассматривается в США в качестве основного для реакторов АЭС нового поколения. Как выяснилось, топливо HALEU легко превращается в оружие — атомные бомбы, эквивалентные по мощности боеприпасам, сброшенным на Хиросиму и Нагасаки. Это должно заставить ещё раз всё взвесить.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Перспективные реакторы в США должны быть значительно меньше современных вплоть до внедрения компактных решений. Это означает, что в качестве топлива должны использоваться радиоактивные материалы с большим процентом обогащения. Сегодня топливо для АЭС обогащается до 5 %. Перспективное топливо HALEU обогащается до 20 % и более. Анализ UCS показал, что для создания атомной бомбы «уровня Хиросимы» достаточно топлива HALEU с обогащением 12 %. Вся необходимая для создания бомбы литература есть в свободном доступе (откуда её также брали аналитики UCS). На изготовление уйдёт от 7 до 10 дней.

Топливо HALEU как-то само собой попало в перечень исключений в руководства и правила по ограничению ядерных вооружений. Сегодня оно не подлежит такому же строгому контролю, как оружейный плутоний или высокообогащённый уран. Между тем, всего-то надо взять в 10–15 раз больше HALEU, чтобы получить ядерный оружейный компонент не хуже, чем в случае использования оружейного. Если будет достаточно линий по переработке HALEU в оружейный компонент, то за неделю вполне можно управиться.

Организация рекомендует пересмотреть правила контроля и информирования надзорных органов в случае краж или иных потерь топлива HALEU. Также рекомендуется пересмотреть проекты перспективных атомных реакторов, чтобы снизить требования к уровню обогащения топлива HALEU ниже 12 %. Сегодня топливо HALEU в США поставляет в основном Россия (по разным оценкам не менее 95 %). В США пытаются за счёт субсидий развернуть производство собственного топлива такого типа. Оно достаточно скоро потребуется, например, для реактора Terra Power, субсидируемого Биллом Гейтсом. Его постройка начнётся в этом месяце и продлится до конца 2030 года. Регулировать обращение опасного топлива необходимо начинать уже сейчас.

США больше не будут покупать уран в России, но есть исключения

В понедельник 13 мая 2024 года президент США Джозеф Байден (Joseph Biden) подписал закон, который запрещает импортировать в США обогащённый уран из России. Сделано это, чтобы ускорить добычу урана на территории США с созданием всех необходимых цепочек поставок. На эти цели из бюджета будет направлено $2,7 млрд — сумма, ранее утверждённая Конгрессом. Россия поставляет в США до 25 % низкообогащённого урана и почти весь высокообогащённый.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Во вчерашнем сообщении Белого дома, который цитирует агентство Интерфакс, сказано следующее: «В понедельник, 13 мая 2024 года, президент подписал (...) "Закон о запрете импорта российского урана", который запрещает импорт необлученного низкообогащенного урана, произведенного в Российской Федерации или российским предприятием».

По данным Министерства торговли США, поставки «Росатома» закрывают до 25 % потребностей страны в этом виде топлива для АЭС. Что касается урана, обогащённого до 20 % и более (высокообогащённого), то альтернатив российскому топливу практически нет. Потребность в топливе HALEU или металлическом высокопробном низкообогащённом урановом топливе пока не очень большая, в отличие от обычного низкообогащённого урана, который регулярно требуется почти сотне реакторов в США на АЭС и в научных учреждениях. Но без топлива HALEU никакие реакторы новых поколений работать не будут. Возможно поэтому высокообогащённый уран выведен из под санкций.

Что касается низкообогащённого урана, то в США с 2020 года остановлена всякая его добыча. В последние месяцы возобновлена работа трёх шахт в Аризоне и Юте. Только стране нужны сотни таких рудников и это проблема. Множество шахт и мест захоронений отходов находятся на землях индейцев. В прошлом они сильно пострадали от последствий, связанных с загрязнением вод и облучением. Поэтому сегодня общественность настроена крайне насторожено к попыткам властей и бизнеса возобновить добычу.

Сторонники ядерной энергетики уверены, что современные технологии помогут создать защищённые и безопасные техпроцессы по разработке урановых шахт, а законодатели на всех уровнях работают, чтобы процесс, наконец-то, пошёл. В частности, разрешена работа рудника, находящегося в районе национального мемориального парка недалеко от Большого Каньона. Местные власти пытаются добиться разрешения открыть там множество новых разработок, хотя сотни старых шахт ещё не очищены от радиации и загрязнений.

«Будущее чистой энергетики нашей страны не будет зависеть от российского импорта, — заявила министр энергетики Дженнифер Гранхолм (Jennifer Granholm). — Мы инвестируем в создание безопасной цепочки поставок ядерного топлива здесь, в Соединённых Штатах».

«Росатом» считает закон о запрете импорта российского обогащённого урана «дискриминационным и нерыночным», как сообщило в своём телеграмм-канале РИА Новости со ссылкой на госкорпорацию. По факту США продолжат покупать у России урановое топливо. По крайней мере, для перспективных реакторов. Но будут делать всё возможное, чтобы рано или поздно уйти от такой зависимости.

Корейский термоядерный реактор на рекордные 48 секунд зажёг плазму, которая в семь раз горячее ядра Солнца

Южнокорейский институт термоядерной энергетики (KFE) сообщил о достижении нового рекорда по времени удержания плазмы реактором KSTAR. К декабрю 2023 года реактор подвергся частичной модернизации, что позволило поднять планку его возможностей. Первые три месяца его работы в новой конфигурации позволили превзойти предыдущий рекорд удержания плазмы с температурой 100 млн °C и приблизиться к новому целевому показателю.

 Источник изображения: Korea Institute of Fusion Energy (KFE)

Источник изображения: Korea Institute of Fusion Energy (KFE)

В ходе предыдущей серии экспериментов термоядерный реактор KSTAR смог удерживать ионную плазму с температурой 100 млн °C в течение 30 секунд. Это в семь раз жарче, чем в ядре нашего Солнца. В звёздах термоядерную реакцию синтеза в основном запускает не температура, а высочайшая гравитация (и квантовая неопределённость). На Земле мы не может создать подобного гравитационного сжатия в реакторах, поэтому приходится компенсировать эту нехватку запредельными температурами.

Важно подчеркнуть, что корейцы практически всегда говорят о нагреве ионной плазмы — о нагреве атомов водорода или его изотопов, тогда как китайские учёные сообщают о достижении рекордного времени удержания обычно электронной плазмы, которая в рабочей зоне может быть в два раза горячее ионной. Для термоядерной реакции ключевым является нагрев атомов, а не электронов. Поэтому «корейские 100 млн» — это правильные 100 млн, которые, в итоге, определят работоспособность будущих коммерческих реакторов.

По плану в этом году модернизированный реактор KSTAR должен удержать стабильную ионную плазму с температурой 100 млн °C в течение 50 секунд. В ходе первого пробного запуска плазма оставалась стабильной 48 с. Также учёные смогли 100 секунд удерживать плазму в «высокоплотном режиме», что также поможет выйти со временем на коммерческие параметры. Повысить длительность удержания плазмы на максимальной температуре помогла модернизация реактора.

В частности, углеродные плитки температурной защиты дивертов на дне рабочей камеры были заменены на вольфрамовые. Сообщается, что благодаря этому плитки диверторов нагрелись всего до 25 % от прежнего уровня, что позволит ещё дольше удерживать непрерывный цикл плазмы. Так что впереди новые рекорды и планы зажечь плазму на 300 секунд в 2026 году.


window-new
Soft
Hard
Тренды 🔥
Чтобы разблокировать соцсеть X в Бразилии, Маск заплатил штраф $5 млн, но не туда 3 ч.
Google установит противоугонную систему на все Android-смартфоны — развёртывание началось 4 ч.
Новая статья: Gamesblender № 694: глобальный сбой в PSN, релиз Unreal Engine 5.5 и новый шутер по StarCraft 6 ч.
СМИ сообщают о грядущей ликвидации одной из российских альтернатив «Википедии» 8 ч.
В обновлённом Telegram появились подарки, подтверждение телефонов, улучшенные жалобы и RTMP-трансляции 11 ч.
Accenture сформировала подразделение NVIDIA Business Group и обучит 30 тысяч сотрудников полному стеку ИИ-технологий NVIDIA 15 ч.
Linux-вирус Perfctl заразил с 2021 года тысячи серверов и скрытно майнит на них криптовалюту 16 ч.
Обновление Samsung привело к поломке смартфонов Galaxy S10 и Note 10 по всему миру 23 ч.
Минцифры опубликовало правила регистрации блогеров-десятитысячников в реестре Роскомнадзора 05-10 01:00
Telegram объяснил недавние сбои событиями на Ближнем Востоке 05-10 00:23