Сегодня 29 сентября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → солнечная система
Быстрый переход

Добавление выпуклостей на солнечные панели позволит им улавливать на 36–66 % больше света

Эффективность органических солнечных панелей можно повысить за счёт придания неровной текстуры их поверхности. Учёные из Университета Абдуллы Гюля в Турции установили, что добавление множества крошечных куполообразных элементов на поверхность панели может на две трети повысить её эффективность за счёт значительного расширения возможности улавливать солнечный свет под более широким углом.

 Источник изображения: spiedigitallibrary.org

Источник изображения: spiedigitallibrary.org

Обычно солнечные панели имеют плоскую поверхность, что позволяет максимально увеличить площадь, на которую падает свет в любой момент времени. Такая конструкция работает лучше всего, если солнечный свет на неё падает под определённым углом, поэтому в течение дня солнечные панели обычно наклоняют под разным углом (от 15º до 40º). Учёные провели серию экспериментов, в результате которых было установлено, что добавление на поверхность солнечной панели множества крошечных куполообразных элементов из кварца позволяет улавливать больше солнечного света и получать больше энергии.

Турецкие учёные провели комплексное моделирование того, как именно куполообразные вкрапления могут повысить эффективность органических солнечных панелей. Для этого задействовали фотогальванические элементы, изготовленные с использованием органического полимера P3HT:ICBA в качестве активного слоя, расположенного поверх слоя алюминия и подложки, а также защищённого прозрачным слоем из оксида индия-олова (ITO). Такая многослойная структура была сохранена на всей площади солнечной панели.

Исследователи провели анализ конечных элементов (FEA) с помощью 3D-технологий, за счёт чего они смогли разбить элементы сложной системы на отдельные фрагменты для более точного моделирования. По сравнению с плоскими поверхностями, солнечные панели, усеянные куполообразными элементами, оказались эффективнее в плане поглощения света на 36 % и 66 % в зависимости от поляризации света. Эти вкрапления также позволяют свету проникать с более широкого диапазона направлений, чем плоская поверхность, обеспечивая угловое покрытие до 82º. Учёные ещё не создали физические версии таких солнечных батарей, но, если они на деле окажутся такими эффективными, то их работа может оказать существенное влияние на развитие солнечной энергетики.

Учёные впервые обнаружили воду на астероидах с помощью прямых наблюдений

Летающая обсерватория NASA SOFIA, оборудованная на самолёте Boeing 747SP, была списана полтора года назад, но собранные ею данные всё ещё приносят пользу науке. Используя собранную инфракрасным телескопом информацию, группа учёных впервые прямым наблюдением обнаружила воду на каменистых астероидах Солнечной системы. Эти данные послужат основой для уточнения модели эволюции планет системы и жизни на Земле.

 Источник изображения: NASA

Источник изображения: NASA

Несколько лет назад, когда SOFIA регулярно поднималась в стратосферу, одна из групп учёных с её помощью обнаружила молекулы воды в одном из кратеров на южном полюсе Луны. Согласно измерениям, воды там было 355 мл/м3. Вода была химически связана с минералами, но её молекулы отчётливо обнаруживались в среднем диапазоне инфракрасного спектра.

Используя прошлый опыт, учёные из Юго-Западного исследовательского института (США) решили поискать воду на четырёх каменистых астроидах главного пояса между Марсом и Юпитером. Для изучения были выбраны Ирис, Партенопа, Мельпомена и Массалия. Молекулы воды отчётливо распознавались в сигналах с Ириса и Массалии, тогда как сигналы с Партенопы и Мельпомены утонули в шумах.

Прямое наблюдение воды на каменистых астероидах указывает на то, что вода на планетах и Земле могла появиться также благодаря каменистым астероидам, ранее считавшимися совершенно безводными. Такие небесные тела формируются ближе к звёздам, и они считались безводными, тогда как на более далёких астероидах за счёт сохранения льда воды должно было быть достаточно много, чтобы это имело значение для формирования водной среды на планетах. Полученные с помощью SOFIA данные говорят, что каменистые астероиды также участвовали в пополнении планет водой.

Знание о распределении воды в планетарных системах поможет нам лучше понимать формирование условий для образования очагов зарождения биологической жизни. Эти же условия будут многократно повторяться в других звёздных системах, что направит поиск инопланетной жизни по наиболее вероятному пути, ведущему к результату. Учёные вдохновились результатами, полученными с помощью «Софии» и намерены воспользоваться возможностями «Уэбба» для поиска воды на других каменистых астероидах нашей системы.

NASA представило неизвестные ранее фотографии спутников Сатурна

Планета-гигант Сатурн известна каждому благодаря своим поразительным кольцам, которых в представленном масштабе больше нет ни у одной планеты Солнечной системы. Однако Сатурн интересен также поразительным количеством спутников, включая большие и даже потенциально пригодные для появления там жизни. На новых недавно обнародованных снимках NASA спутники Сатурна представлены во всей красе, словно сошли со страниц фантастических произведений.

 Источник изображения: NASA

Слева направо запечатлены Янус, Пандора, Энцелад, Мимас и Рея, а края колец Сатурна проходят через середину снимка. Источник изображения: NASA

Но это реальные изображения, полученные автоматической станцией NASA «Кассини» (Cassini). Станция изучала систему Сатурна с 2004 по 2017 год. Благодаря ей и последующим наблюдениям нам сегодня известно о существовании 156 спутников у этой планеты-гиганта. Это своего рода Солнечная система в миниатюре и когда-нибудь она станет обширной обжитой областью пространства, в которой человечество сможет найти свой второй дом.

 Кольца Сатурна и четыре его спутника: Пан, Титан, Диона и Пандора

Кольца Сатурна и четыре его спутника слева направо: Пан (в разрыве колец), Титан, Диона (на фоне Титана) и Пандора

Даже по одним только фотографиям крупных лун Сатурна учёные могут определить геологию и особенности строения этих небесных тел. Среди них выделяются спутники, изобилующие трещинами и даже гейзерами, что намекает на существование там глобальных подповерхностных океанов. А где жидкая и, тем более, отчётливо водная среда, там вполне могут быть условия для зарождения биологической жизни в тёплых слоях глубоко подо льдом или скалами.

 Подсвеченная Солнцем атмосфер Титана за кольцами и маленький Эцелад на фоне атмосферы

Подсвеченная Солнцем атмосфер Титана за кольцами и маленький Энцелад на фоне атмосферы

Более того, спутник Сатурна Титан единственная в Солнечной системе луна с плотной атмосферой. В своё время NASA рассчитывает запустить на него 450-кг вертолёт «Стрекоза». Титан особенно эффектно выглядит на фотографиях «Кассини», когда Солнце освещает его с тыла, подсвечивая атмосферу малой планеты. Наконец, это просто красиво и даже поразительно, что у нас есть возможность смотреть на снимки, сделанные за миллиарды километров от Земли.

Похожий на «Звезду смерти» спутник Сатурна заподозрен в сокрытии океана под своей поверхностью

В сравнении с другими крупными лунами Сатурна (и Юпитера) спутник Мимас не изобилует трещинами и разрывами, напоминая своими кратерами нашу Луну. Тем самым, это должен быть сухой мир из скальных пород, однако дело, похоже, обстоит иначе. У Мимаса странная орбита, как будто у него внутри что-то плещется, или его ядро имеет необычно вытянутую форму. Как показало моделирование, всё говорит в пользу скрытого океана, и это находка для учёных.

 Художественное представление сптуника Сатурна Мимаса. Источник изображения: Observatoire de Paris

Художественное представление спутника Сатурна Мимаса. Источник изображения: Observatoire de Paris

Подробные данные по системе Сатурна собрала автоматическая станция «Кассини» в период с 2004 по 2017 годы. Группа учёных из Парижской обсерватории воспользовалась этой информацией, чтобы заново оценить орбитальные параметры Мимаса, который напоминает «Звезду смерти» благодаря огромному ударному кратеру на своей поверхности. Они хотели исключить один из сценариев, из-за которого орбита этой луны выглядит необычно для монолитного скалистого небесного тела.

Согласно одному из вариантов, Мимас может содержать сильно вытянутое ядро, которое заставляет его совершать колебательные движения, проходя по орбите. Во втором случае, под его скалистой поверхностью может скрываться глобальный водный мир, потоки которого также вызывают изменения в орбитальном движении спутника.

Моделирование показало, что существование вытянутого ядра представляется наименее вероятным сценарием. С учётом динамики орбитального движения Мимаса под воздействием гравитации Сатурна и других его крупнейших лун, орбитальные параметры подозрительной луны, скорее всего, объясняются жидким подповерхностным океаном.

Расчёты показывают, что жидкий океан на Мимасе сравнительно молодой — ему всего 2–3 млн лет. Вероятнее всего, незадолго до его появления орбита этой луны изменилась со стабильной круговой на вытянутую, что в системе с множеством лун считается нормальным явлением. Гравитация Сатурна стала оказывать на недра Мимаса прерывистое воздействие, и это привело к гравитационному разогреву его ядра и внутренней структуры. Вода начала выделяться в жидком виде и постепенно там образовался глобальный подповерхностный океан, который к настоящему моменту подошёл к поверхности Мимаса на 20–30 км.

 По часовой стрелке слева вверху: Энцелад, Европа, Ганимед и Титан. В центре — Мимас. Источник изображения: Observatoire de Paris

По часовой стрелке слева вверху: Энцелад, Европа, Ганимед и Титан. В центре — Мимас. Источник изображения: Observatoire de Paris

По внешнему виду этой луны не скажешь, что под её корой плещутся массы воды, намного больше, чем в земных океанах. На Мимасе нет трещин и гейзеров, как на лунах Энцеладе, Европе, Ганимеде и Титане, поэтому он долго хранил свою тайну. Не менее важно, что если там действительно есть глобальный океан, то его молодость — это способ заглянуть в прошлое других лун Сатурна и Юпитера, чтобы понять эволюционное развитие подповерхностных водных миров. На глазах учёных буквально может твориться ранняя геологическая история этих миров, чему учёные несказанно рады.

«Джеймс Уэбб» открыл две экзопланеты, пережившие гибель своих звёзд

Космическая обсерватория им. Джеймса Уэбба сделала два редких наблюдения — напрямую увидела две экзопланеты в системах с белыми карликами. Это экзотика в квадрате — получить свет от планет вне Солнечной системы и ещё переживших смерть своей звезды.

 Художественное предсталвление экзопланеты-гиганта в системе с белым карликом. Источник изображения: Robert Lea

Художественное представление экзопланеты-гиганта в системе с белым карликом. Источник изображения: Robert Lea

Статья об открытии ещё не прошла рецензирование и находится на сайте arXiv. Экзопланеты-кандидаты были обнаружены прибором «Уэбба» MIRI в среднем инфракрасном диапазоне, когда в поле зрения телескопа попали белые карлики WD 1202-232 и WD 2105-82. Одна из потенциальных экзопланет располагается на расстоянии от звезды примерно в 11,5 раз дальше, чем Земля отстоит от Солнца. Второй кандидат находится ещё дальше от своей звезды — на удалении в 34,5 раза дальше, чем расстояние между нашей планетой и Солнцем.

Массы обеих экзопланет пока неизвестны. Для их определения необходимы новые наблюдения. По грубым оценкам, каждая из экзопланет может быть от 1 до 7 раз тяжелее Юпитера — самой большой планеты Солнечной системы. Пока масса этих объектов не будет определена, они будут считаться кандидатами в экзопланеты. Их предыдущие орбиты, по-видимому, были намного ближе к звёздам. Вероятно, примерно на том месте, где сейчас находятся орбиты Сатурна и Юпитера. Когда звёзды в этих системах умирали и превращались в красных гигантов, их разросшиеся оболочки выжигали и выталкивали всё до орбиты Марса, и это могло также привести к изменению орбит экзопланет-гигантов.

Глядя на системы WD 1202-232 и WD 2105-82 мы фактически наблюдаем слепок с Солнечной системы примерно через 5 млрд лет, когда Солнце пройдёт стадию красного гиганта и сбросит внешнюю оболочку, оставив в центре системы остывающее ядро — белый карлик.

 Источник изображения: Mulaney, et al, 2024

Источник изображения: Mulaney, et al, 2024

Кстати, от 25 % до 50 % наблюдаемых белых карликов демонстрируют повышенное содержание металлов по классификации астрономии — химических веществ тяжелее водорода и гелия. На примере наблюдаемых систем с выжившими планетами-гигантами можно предположить, что они сбрасывают на ядра звёзд астероиды и кометы, являясь источниками загрязнения остатков звёзд металлами. Тем самым планеты-гиганты могут считаться распространёнными телами в звёздных системах.

Ещё одно интересное наблюдение кандидатов в экзопланеты заключалось в том, что они были намного горячее в определённом диапазоне инфракрасного спектра, чем можно было бы ожидать. Это позволяет надеяться, что дополнительное тепло может поступать, например, от их спутников. Тем самым у нас появляется шанс впервые открыть экзолуну. Одним словом, обнаружены очень перспективные для наблюдений объекты и «Уэбб» ещё наверняка уделит им внимание.

NASA превратит исследование и освоение Марса в коммерческий проект

NASA опубликовало документ под названием «Исследуем Марс вместе: запрос на коммерческие услуги». От частных компаний из США требуется предоставить агентству план по реализации одной из четырёх будущих частных миссий на Марс, включая доставку небольших спутников на орбиту и съёмку Красной планеты. NASA готово заплатить $200 000 за исследование одной из эталонных миссий или $300 000 за максимум два исследования, и собирается заключить «несколько» контрактов.

 Источник изображения: NASA

Источник изображения: NASA

«Проект плана программы исследования Марса на следующие два десятилетия будет предусматривать более частые менее дорогостоящие миссии для достижения убедительных результатов научных исследований для более широкого сообщества, — говорится в документе. — При реализации плана правительство и промышленность США будут сотрудничать, чтобы использовать существующие и новые земные и лунные продукты и коммерческие услуги для снижения общих затрат и ускорения лидерства в исследовании дальнего космоса».

В своём 496-страничном меморандуме NASA описывает четыре «эталонные миссии по проектированию», на разработку которых компании могут подать заявку:

  • Доставка и размещение небольшой полезной нагрузки: «Запустите и доставьте полезную нагрузку, предоставленную Программой исследования Марса, включая возможные развёрнутые кубсаты, и работайте на орбите Марса. Масса полезной нагрузки — до 20 кг».
  • Доставка и размещение более крупной полезной нагрузки: «Запустите и доставьте на орбиту Марса один или несколько отделяемых космических аппаратов и, при желании, предоставьте услуги для одной или нескольких размещённых полезных нагрузок при общей массе 1250 кг».
  • Услуги электрооптической визуализации: «Предоставьте датчики и платформы орбитального космического корабля для оказания услуг по визуализации Марса в течение двух лет. Изображения будут использоваться для поддержки научных исследований, выбора места посадки и оценки опасностей, обнаружения изменений, а также мониторинга и планирования наземных объектов».
  • Услуги ретрансляции нового поколения: «Обеспечьте услуги ретрансляции связи между Марсом и Землёй для объектов на поверхности и орбите в течение четырёх лет».

В последние годы NASA целенаправленно переходит от модели «владения» всеми активами и средствами, необходимыми для исследования Солнечной системы, к использованию коммерческих услуг. Ярким примером является «Программа коммерческих экипажей». NASA не владеет кораблём Crew Dragon компании SpaceX, а лишь предоставило частичное финансирование при его разработке, и теперь просто оплачивает доставку астронавтов по мере необходимости. В то же время, SpaceX имеет возможность выполнять частные миссии.

NASA распространило этот подход на Луну с помощью программы Commercial Lunar Payload Services, в рамках которой оно покупает услуги отправки аппаратов на Луну у таких компаний, как Astrobotic, Intuitive Machines и Firefly. Повышенный риск неудачи (как в недавней миссии Astrobotic) компенсируется для NASA низкими затратами и ускорением развития коммерческой космической индустрии. В конечном итоге это позволит NASA больше заниматься наукой и исследованиями.

Теперь NASA собирается расширить коммерческий подход и на исследование Марса. Нынешний запрос предложений имеет большое значение как для агентства, так и для космической отрасли, даже несмотря на то, что соответствующие суммы в долларах невелики.

На первый взгляд, фаворитом «гонки к Марсу» является космический корабль Starship компании SpaceX, который изначально разрабатывается и испытывается специально с целью колонизации Марса. Многие учёные и исследователи отмечают значительный потенциал Starship и крайне заинтересованы в его использовании при изучении Красной планеты.

 Источник изображения: SpaceX

Источник изображения: SpaceX

Однако, NASA расширяет диапазон потенциальных участников. Размер полезной нагрузки всего в 20 кг открывает двери для большого числа поставщиков, а услуги по созданию изображений могут быть привлекательными для компаний, уже занимающихся этим на низкой околоземной орбите, таких как Planet. В этой связи многие учёные задаются сейчас вопросом, привлечёт ли предложение NASA заметное количество новых компаний, или уникальные проблемы Марса в сочетании с низкой коммерческой отдачей и высоким уровнем риска заинтересуют лишь уже задействованных крупных участников.

Коммерческий подход к исследованию космоса имеет потенциал для NASA в том числе и для потенциальной замены своего стареющего флота. Например, космический аппарат Mars Reconnaissance Orbiter находится на Красной планете с 2006 года, обеспечивая получение изображений с высоким разрешением и ретрансляцию сообщений с поверхности Марса на Землю. NASA рассчитывает, что коммерческие поставщики смогут в будущем взять на себя все или некоторые из этих функций.

Нужно отметить, что NASA в настоящее время не собирает предложения о создании коммерческого спускаемого аппарата на Марс. В настоящее время такой «тендер» может оказаться чересчур амбициозным, что ограничит потенциальное число участников торгов до нескольких самых крупных, таких как SpaceX и Lockheed Martin.

«Джеймс Уэбб» впервые в истории засёк признаки полярного сияния над несостоявшейся звездой

Новое исследование несостоявшихся звёзд — коричневых карликов — позволило впервые обнаружить признаки невиданного ранее феномена. На одном из объектов проявились признаки полярного сияния, что невозможно было предположить даже в принципе. На соседних с звёздами планетах сияния ионосферы — это обычное явление. Но чтобы оно возникло без постороннего воздействия — с таким учёные ещё не встречались.

 Источник изображения: NASA, ESA, CSA, Leah Hustak (STScI)

Полярное сияние над коричневым карликом в представлении художника. Источник изображения: NASA, ESA, CSA, Leah Hustak (STScI)

Об открытии сообщила команда учёных во главе с астрономом Американского музея естественной истории Джеки Фарти (Jackie Faherty). С помощью космической обсерватории «Джеймс Уэбб» учёные исследовали 12 коричневых карликов. Среди них были объекты W1935 и W2220 — это два очень похожих коричневых карлика, которые оказались близкими клонами друг друга. Они были идентичны по температуре и яркости, а также по химическому составу, включая содержание воды, аммиака, монооксида углерода (угарный газ) и двуокиси углерода (углекислый газ). Но было и отличие: в инфракрасном диапазоне метан в составе W1935 излучал свет, а W2220 — поглощал.

Изучение газовых гигантов в нашей Солнечной системе показало, что свечение метана в полярных областях сопровождается полярными сияниями. Но на планеты внутри системы воздействует излучение центральной звезды. Энергичные частицы покидают звезду и попадают в магнитные поля планет, а те отводят их в полярные области, где происходит взаимодействие с атомами ионосферы, которое сопровождается разогревом верхних слоёв и, как проявление всего этого, полярными сияниями.

 Уэбб засёк эмиссию метана в атмосфере коричневого карлика, что указывает на возможное полярное сияние

«Уэбб» засёк эмиссию метана в атмосфере коричневого карлика, что указывает на возможное полярное сияние

Однако коричневый карлик — это звезда, которой не хватило массы для запуска термоядерной реакции. Он сам по себе в системе и ничто не должно влиять на его атмосферу и ионосферу. Там не должно быть признаков полярных сияний, что подтверждает наблюдение объекта W2220. Напротив, ионосфера W1935 оказалась разогретой без видимой причины, что заставило заподозрить на нём полярные сияния.

Какие процессы заставили метан нагреться в верхних слоях коричневого карлика W1935, учёные не знают, но намерены выяснить это в будущих наблюдениях за такими объектами. Возможно феномен полярных сияний имеет также иную природу, чем ту, которую мы наблюдаем в нашей системе. Обсерватория «Джеймс Уэбб» предоставляет возможность таких наблюдений, каждый раз доказывая, что из затраченных на её запуск $10 млрд каждый цент окупится сторицей.

Индийская солнечная обсерватория Aditya-L1 вышла на рабочую орбиту и готовится к наблюдениям

Министр науки и технологий Индии Джитендра Сингх (Jitendra Singh) сообщил в социальных сетях, что солнечная обсерватория Aditya-L1 вышла на заданную орбиту, «чтобы раскрыть тайны связи Солнца и Земли». Обсерватория прибыла и будет находиться на удалении 1,5 млн км от Земли в точке Лагранжа L1. После четырёхмесячного путешествия Aditya-L1 готовится приступить к полноценной научной работе по наблюдению за Солнцем.

 Источник изображения: ISRO

Источник изображения: ISRO

Обсерватория Aditya-L1 выведена в космос индийской ракетой-носителем PSLV-C57, стартовавшей в 11:50 утра по местному времени (09:20 мск) с площадки Космического центра им. Сатиша Дхавана 2 сентября 2023 года. Проблем с выводом ракеты на заданную траекторию не возникло. Научное оборудование специалисты миссии начали проверять ещё на подходе к месту базирования. Так, первое изображение верхних слоёв солнечной атмосферы с помощью ультрафиолетового телескопа было получено ещё в начале декабря за месяц до прихода обсерватории в точку Лагранжа L1.

Всего на борту обсерватории семь полезных нагрузок (приборов), с помощью которых будет вестись наблюдение за фотосферой, хромосферой и самыми внешними слоями Солнца. Четыре из них непосредственно займутся прямым наблюдением за Солнцем, а остальные будут исследовать частицы и поля в точке Лагранжа L1, собирая научные данные о солнечной динамике в межпланетной среде.

Индийская космическая программа начала набирать обороты после 2008 года, когда страна впервые отправила зонд на орбиту Луны. В августе 2023 года Индия стала первой страной, чей спускаемый аппарат и луноход опустились максимально близко к южному полюсу Луны, где ещё никого не было.

 Первый снимок Солнца, полученный обсерваторией

Первый снимок Солнца, полученный обсерваторией Aditya-L1

Также Индия стала первой страной из Азии, которая в 2014 году вывела космический аппарат на орбиту вокруг Марса, и ожидается, что в конце 2024 года она запустит трёхдневную миссию с экипажем на орбиту Земли. Наконец, в планах Индии совместная миссия с Японией по отправке ещё одного зонда на Луну к 2025 году и отправка зонда к Венере в течение следующих двух лет.

Нептун оказался совсем не таким, как было принято считать — учёные узнали истинный цвет планеты

Первые фотографии Нептуна и Урана сделал космический зонд «Вояджер-2», пролетевший мимо них десятилетия назад. С тех пор учёных терзали смутные сомнения, почему далёкие планеты на снимках разного цвета, хотя составы атмосфер у них похожи? Уран на фотографиях предстал бледно-голубым, а Нептун — более глубокого синего цвета. Разгадали секрет британские учёные.

 Источник изображения: University of Oxford

Истинные цвета Урана (слева) и Нептуна (справа). Источник изображения: University of Oxford

Дело в том, что камера «Вояджера-2» сделала снимки Нептуна и Урана в чуть различающихся динамических диапазонах. Вдобавок к этому снимки Нептуна прошли дополнительную обработку, что повысило их контрастность и сделало цвета более глубокими. Поэтому на первых снимках Уран предстал в аквамариновых тонах, а Нептун — в лазурных.

Забавно, что в научной литературе в аннотации к снимкам Нептуна было указано, что снимки прошли соответствующую обработку, что изменило видимые цвета. Впоследствии это пояснение было утеряно и изображения Нептуна начали кочевать по публикациям фактически в искажённом виде. В результате даже в научной среде стало обычным считать Нептун синим, а не голубым.

«Неправильное представление о цвете Нептуна, а также необычные изменения цвета Урана преследовали нас десятилетиями, — объяснила астроном Хайди Хаммель (Heidi Hammel) из Ассоциации университетов по исследованию астрономии, которая не участвовала в исследовании, но была членом команды NASA по программе «Вояджеров». — Это всестороннее исследование должно, наконец, положить конец обоим проблемам».

Истинные цвета Нептуна и Урана позволило выяснить новое исследование с привлечением данных космического телескопа «Хаббл» и Очень большого телескопа Европейской южной обсерватории в Чили. Используя спектрометры на этих телескопах, учёные получили данные для построения уточнённой цифровой модели для анализа исходных данных «Вояджера-2». Как результат, Нептун оказался почти того же цвета, что и Уран — аквамаринового, а не лазурного. Нептун оказался чуть темнее, поскольку дымка в его верхних слоях была чуть тоньше, чем на Уране и отражала меньше солнечного света.

Также новое исследование разгадало загадку изменения цвета Урана со временем. В течение своего года, который длится 84 земных года, Уран поворачивается к Солнцу то экватором, то полюсом (он лежит на боку по отношению к эклиптике). В приполярных областях в атмосфере Урана больше метана, который поглощает красные длины волн. Поэтому при обращении к Солнцу полюсом планета приобретает зеленоватый оттенок, что также нашло подтверждение в новой научной работе.

Пауза в солнечном ветре взорвала атмосферу Марса

26 декабря 2022 года находящийся на орбите Марса зонд NASA MAVEN зафиксировал редкое явление — своеобразный провал в солнечном ветре. Это «окно» вызвало взрывное расширение атмосферы Марса. Космическая погода преподнесла очередной сюрприз, изучение которого позволит больше узнать о потенциально обитаемых мирах вокруг далёких звёзд.

 Источник изображения: NASA

Источник изображения: NASA

Интенсивность солнечного ветра — вылетающих с поверхности звезды электронов и ионов водорода — зависит от её активности и конкретного состояния локальных магнитных полей. Изредка бывает так, что звезда испускает частицы с большей силой и скоростью, которые догоняют более медленные массивы частиц, испущенные раньше. Тогда в нашей системе возникают области повышенной и пониженной концентрации частиц солнечного ветра, и это оказывает влияние на атмосферы планет.

Впервые такое влияние было замечено в 1999 году, когда внезапное ослабление солнечного ветра в 100 раз раздуло атмосферу и магнитосферу Земли. При этом надо помнить, что у Земли есть магнитное поле, которое защищает нас от космических частиц, а у Марса его нет. В то же время у Марса есть индуцированное магнитное поле. Оно возникает в процессе взаимодействия солнечного ветра с ионосферой Марса. Это поле и частицы солнечного ветра способна фиксировать аппаратура орбитального зонда NASA MAVEN.

В ходе наблюдения за электромагнитными явлениями вокруг Марса 26 декабря 2022 года было зафиксировано 10-кратное снижение давления солнечного ветра и 100-кратное снижение плотности его частиц. Анализ данных показал, что в это время ионосфера и индуцированное магнитное поле Красной планеты расширились в три раза. Атмосферу Марса как будто взорвало изнутри. Очевидно, будь Марс в системе с менее «ветреной» звездой, его эволюция пошла бы по другому пути.

Опыт с Марсом показывает, насколько важно проводить измерения на месте. Без орбитальных аппаратов у близких и далёких планет мы не сможем получить информацию о процессах подобного рода. Изучение этих процессов в нашей системе даст информацию для моделирования атмосферных явлений у планет в иных звёздных системах и, в целом, позволит лучше моделировать процессы зарождения жизни на других мирах.

Солнце распахнулось: на обращённой к Земле стороне светила образовалась пугающая корональная дыра

По данным наблюдения за Солнцем, на его обращённой к Земле стороне образовалась гигантская корональная дыра. Через такие прорехи в короне Солнца устремляются потоки солнечного ветра, способные доставить проблемы средствам связи и навигации на Земле, а также радость от наблюдения полярных сияний до средних широт и даже ближе к экватору.

 Нажмите для увеличения. Источник изображения: SOHO (NASA/ESO)

Нажмите для увеличения. Источник изображения: SOHO (NASA/ESO)

Корональные дыры — это области в солнечной короне, где плотность и температура плазмы значительно ниже, чем в остальных областях. Чаще всего плотность в области корональных дыр примерно в сто раз меньше, чем в остальных областях короны. В оптическом диапазоне такие «прорехи» не видны. Они фиксируются в рентгеновском диапазоне.

Чаще всего корональные дыры возникают во времена спада активности Солнца. Поэтому нынешнее появление корональной дыры, и такой огромной, выглядит необычно. Впрочем, нынешний солнечный 11-летний цикл необычен по многим причинам, включая то, что пик активности может произойти на год раньше ожидаемого — вместо середины 2025 года осенью 2024.

Прошедшая неделя также намекала на растущую активность Солнца. Возмущения на звезде вызвали до десятка геомагнитных бурь на Земле, начиная с самых слабых класса G1 до сильной уровня G3 на эти выходные.

Можно только поприветствовать усилия учёных и национальных космических агентств, которые готовы встретить пик текущего цикла во всеоружии. За этим будут следить до десяти космических аппаратов, включая запущенный в начале осени индийский спутник, и свыше десяти земных телескопов, включая два новейших китайских радиотелескопа. Солнце в новом сезоне не будет обойдено вниманием земной науки. Собираясь улетать далеко из-под магнитного зонтика Земли, мы должны чётко понимать, какая космическая погода нас ждёт в пути.

С жизнью на Марсе не задалось с самого начала, показало новое исследование его ядра

Новая интерпретация данных марсианского зонда NASA InSight позволила сделать вывод, что земная наука ошибалась относительно внутреннего строения Красной планеты. В журнале Nature одновременно вышли две статьи европейских учёных, которые доказали существование океана расплавленных силикатов вокруг марсианского ядра.

 Внутренее строение Марса по представлению художника. Источник изображения: Thibaut Roger, NCCR Planet S/ETH Zürich

Внутреннее строение Марса по представлению художника. Источник изображения: Thibaut Roger, NCCR Planet S/ETH Zürich

После Земли Марс стал вторым небесным телом Солнечной системы, строение недр которого мы можем изучать более-менее прямыми наблюдениями. До бурения скважин на Марсе мы пока не дошли, но сбор данных о марсотрясениях и последствиях падения метеоритов дают достаточно представлений о его геологической структуре.

Зонд InSight начал собирать данные о сейсмической активности Марса с декабря 2018 года. За первый год с момента прибытия на планету зонд зафиксировал 170 марсотрясений. На основе этой информации учёные рассчитали размеры ядра, мантии и коры Марса. Оказалось, что планета обладает огромным по отношению к её размерам ядром, радиус которого был установлен как 1830 км (радиус Марса равен 3390 км). Земное ядро намного меньше в этом плане, что делает Марс интересным объектом для изучения.

 Источник изображения: Khan / Nature

Источник изображения: Khan / Nature

Теперь учёные из Франции и Швейцарии более детально и с большим охватом изучили данные InSight и обе группы независимо пришли к выводу, что вокруг ядра Марса плещется 150-километровый океан расплавленных силикатов. Если интерпретация данных верна, а на это указывают множество факторов, то радиус ядра Марса несколько меньше, а именно 1650–1675 км.

 Источник изображения: Vvan der Lee / Nature

Источник изображения: Vvan der Lee / Nature

Более того, наличие расплавленной прослойки между ядром Марса и его мантией означает иное геологическое развитие планеты, чем, например, Земли. В частности, это замедлило процесс остывания ядра, что в своё время не позволило появиться на Марсе магнитному полю и, следовательно, не могло дать шансов развиться биологической жизни на его поверхности, а это может в корне изменить подходы для поиска жизни на этой планете. Она не могла там погибнуть после потери планетой магнитного поля в древности, если поля там не было с самого её начала.

Свежая прошивка 46-летних аппаратов «Вояджер» должна продлить срок их жизни ещё на несколько лет

NASA сообщило, что специалисты подготовили и отправили на космические зонды «Вояджер-1» и «Вояджер-2» программные заплатки, которые позволят как минимум на пять лет продлить работу аппаратов. Патчи устраняют две потенциальные проблемы, одна из которых связана с работой двигателей коррекции, а вторая — с искажением передаваемой на Землю телеметрии.

 Источник изображения: NASA

Источник изображения: NASA

Сегодня оба зонда движутся вне пределов гелиосферы Солнечной системы на удалении 24 и 19 млрд км (первым летит «Вояджер-1»). Радиосигнал до «Вояджера-2» идёт 18 часов. Команда на обновление с микрокодом передана несколько часов назад. Первый запуск с обновлённой прошивкой ожидается примерно через двое суток. «Вояджер-1» пока не будет обновляться. Он находится дальше своего собрата и поэтому более ценен с точки зрения сбора научных данных. Он подождёт пробного запуска нового микрокода на «Вояджере-2», и если всё пройдёт успешно, тоже получит обновление.

Исправлением микрокода инженеры намерены устранить две опасности для космических зондов, которые первыми в истории Земли вышли в межзвёздное пространство. Обоим аппаратам исполнилось по 46 лет. Это само по себе чудо, что компьютерные платформы образца 1977 года до сих пор работают фактически в автоматическом режиме. Вмешательство людей оказалось для них большей угрозой, чем самостоятельная работа. Напомним, летом этого года на зонд «Вояджера-2» была отправлена ошибочная команда, и это прервало связь с Землёй. Связь была восстановлена, но зонд мог бы решить эту проблему даже без вмешательства людей.

Но никакая компьютерная система не защищена от сбоев. В прошлом году «Вояджер-1» стал присылать на землю искажённую телеметрию, хотя все его бортовые системы работали нормально. Причины этого всё ещё остаются неясными. По какой-то причине система управления ориентацией зонда — AACS (attitude articulation and control system) — вместо передачи команд на исполнение начала записывать их в память бортового компьютера. Команды на исполнение пропускались, хотя на Землю шли другие отчёты, что вызвало отрыв телеметрии от реальности.

Для устранения подобного в будущем инженеры внесли исправление в микрокод и надеются, что это позволит избежать подобного на втором аппарате и не приведёт к повторению ситуации на первом.

Вторая проблема, которую должен исправить новый патч — это засорение топливопроводов двигателей ориентации остатками топлива. Топливо подаётся по основным топлипроводам к двигателям и распределяется внутри двигателей по более тонким внутренним топлипроводам, которые в 25 раз уже основных. За десятилетия работы двигателей ориентации зондов, которые отвечают за точное направление антенн на Землю, в узких внутренних трубках накопились остатки топлива. Это может помешать работе двигателей и рано или поздно приведёт к потере зондов. Чтобы отодвинуть этот момент как можно дальше в будущее, предложено чуть сильнее раскручивать зонды в процессе ориентации.

Исправление позволит вращать зонды примерно на 1 ° сильнее по оси. Это будет на время прерывать связь с Землёй, но должно помочь в инерционном проталкивании остатков топлива дальше по трубопроводам. Инженеры подсчитали, что частичная потеря связи и передачи научных данных в итоге будет компенсирована увеличенным сроком жизни зондов. Исправление позволит, как минимум, на пять лет продлить жизнь обоим «Вояджерам». Правда, с питанием у обоих зондов становится всё хуже и хуже и энергии в полном объёме должно хватить лишь на три года. Но это уже другая история.

Зонд «Юнона» сфотографировал  Ио — насыщенный вулканами спутник Юпитера — с расстояния 11 тыс. км

Зонд NASA Juno («Юнона») с успехом продолжает работать даже через много лет после завершения своей основной научной программы по изучению системы Юпитера. Сейчас аппарат совершает манёвры по максимально близкому пролёту к спутнику Юпитера Ио. Это самое вулканически активное тело в Солнечной системе. И мы впервые наблюдаем его с относительно близкого расстояния.

 Ио с расстояния 11 тыс. км. Источник изображения: NASA

Ио с расстояния 11 тыс. км. Источник изображения: NASA

Зонд «Юнона» произвёл очередное сближение с Ио в минувшие выходные — 15 октября. Камера зонда сделала более дюжины снимков Ио с расстояния в 11 680 км, что в два раза ближе, чем до этого. Это самые чёткие и лучшие снимки спутника со времён миссии Galileo, которая проходила с 1995 по 2003 годы. А Ио достоин особого внимания! Гравитационное воздействие на эту луну самого Юпитера и остальных его ближайших лун настолько велико, что недра Ио находятся в постоянном движении, что сопровождается непрекращающейся вулканической активностью.

 Ио на фоне Юпитера

Ио на фоне Юпитера

На Ио замечено около 400 вулканов, 150 из которых всегда одновременно активны. На новых снимках ещё до их финальной обработки заметно, по меньшей мере, четыре шлейфа выбросов от вулканической деятельности этой луны. Позже NASA предоставит полученные изображения в красивой обработке. Но даже в первоначальном виде чёткость снимков поражает воображение. А ведь это ещё не всё! В следующие пролёты мимо Ио «Юнона» сблизится с ним до 1500 км, что произойдёт 30 декабря 2023 года и 3 февраля 2024 года.

 Серия снимков Ио во время его пролёта «Юноной» 15 октября 2023 года

Серия снимков Ио во время его пролёта «Юноной» 15 октября 2023 года

Зонду «Новые горизонты» позволили изучать Пояс Койпера — работа продлится до 2029 года

В NASA сообщили, что миссия New Horizons («Новые горизонты») по исследованию объектов во внешней области Солнечной системы включит в себя изучение Пояса Койпера на всём его протяжении, пока зонд не покинет его в 2028 или 2029 году. Это решение потянет за собой изменения в финансировании будущих космических программ, чему ещё предстоит дать оценку.

 Зонд «Новые горизонты» в представлении художника. Источник изображения: NASA/APL/SwRI and NASA/JPL-Caltech

Зонд «Новые горизонты» в представлении художника. Источник изображения: NASA/APL/SwRI and NASA/JPL-Caltech

Споры о научной программе и управлении миссией New Horizons вызвали в NASA межведомственный скандал. В прошлом году руководство NASA приняло решение, что исследование зондом Пояса Койпера — межпланетной среды и объектов, преимущественно астероидов — будет финансироваться только до 2024 года. После этого управление миссией планировали передать гелиофизикам, а планетологов лишить возможности проводить научные эксперименты или, по крайней мере, самостоятельно принимать решения об их проведении.

Среди потенциально интересных исследований остаётся надежда на пролёт зонда относительно близко к какому-либо астероиду в Поясе. Потенциальная цель пока не определена, но когда-то может возникнуть недалеко от траектории полёта «Новых горизонтов». Если бы верх взяли гелиофизики, этого, возможно, не произошло бы вообще. Теперь по решению руководства NASA, планетологи и гелиофизики будут совместно управлять миссией, а финансирование расширенной программы будет поступать в основном от Управления планетарных исследований Центра космических полетов им. Маршалла.

Такое положение дел продлится до выхода зонда из Пояса Койпера, что ожидается в 2028 или 2029 годах. Также это повлечёт за собой перераспределение финансирования не только для миссии New Horizons, но и для будущих миссий NASA по программам изучения дальнего космоса. Что касается самого зонда, то его источник питания рассчитан на работу до 2035 года, хотя расширенная программа может израсходовать часть его невосполняемого ресурса мощности.


window-new
Soft
Hard
Тренды 🔥
Рождение экосистемы: Intel объявила о доступности ИИ-ускорителей Gaudi3 и решений на их основе 6 ч.
Индия запустила сразу пять суперкомпьютеров за два дня 8 ч.
Корабль SpaceX Dragon Crew-9 с россиянином и американцем отправился на МКС 10 ч.
Министр энергетики США не против иностранных инвестиций в ИИ ЦОД 10 ч.
Google представила технологию проектирования микросхем AlphaChip с помощью ИИ 11 ч.
Xiaomi представила внешний аккумулятор Power Bank 25000 с выходной мощностью до 212 Вт 14 ч.
В Швейцарии придумали роборуку, которая может отсоединяться от манипулятора и самостоятельно ползать 15 ч.
Мировой облачный рынок стремительно растёт: затраты в сегменте ЦОД за полгода подскочили почти на треть 16 ч.
В Ирландии построят первое в Европе хранилище энергии на батареях с обратимой коррозией металла 17 ч.
В Китае впервые представили лунный скафандр — мощный и элегантный 20 ч.