Сегодня 28 сентября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → утилизация

Microsoft создала робота для разборки и переработки 2 млн жёстких дисков в год

Неисправные или изношенные жёсткие диски могут содержать множество ценных данных, которые необходимо гарантированно удалить без возможности восстановления. Но они также состоят из довольно ценных деталей, таких как алюминиевые пластины, неодимовые магниты и шасси из нержавеющей стали. Поэтому вместо того, чтобы измельчать диски, Microsoft изобрела роботов, которые разбирают их в промышленных количествах для извлечения всех ценных материалов.

 Источник изображений: Microsoft

Источник изображений: Microsoft

В 2022 году команда под руководством Ранганатана Шриканта (Ranganathan Srikanth) представила роботов, которые разбирают жёсткие диски, удаляют данные путём уничтожения пластин и перерабатывают оставшиеся части для извлечения ценных материалов и деталей для их повторного использования. Роботизированная система производства Dobot Robotics на основе ИИ от Microsoft использует компьютерное зрение для распознавания различных типов жёстких дисков и выбора способа их разборки.

По данным Microsoft, этот новый подход NoShred направлен на достижение 90 % повторного использования и переработки жёстких дисков к 2025 году. Роботы обеспечивают безопасность данных, уничтожая только компоненты, несущие данные, и извлекая ценные материалы. Следует отметить, что во многих случаях компании, которые должны уничтожать свои диски, не делают этого, и они в конечном итоге собирают пыль в складских помещениях или отправляются на свалки.

Усилия Microsoft выходят за рамки внутренней политики. Компания сотрудничает с производителями жёстких дисков и правительствами, чтобы повлиять на глобальный подход к утилизации электронных отходов. Сотрудничая и делясь своими технологиями, Microsoft надеется уменьшить воздействие электронных отходов на окружающую среду и улучшить безопасность для компаний по всему миру. Инициатива также отражает цели Microsoft в области устойчивого развития, которые включают достижение отрицательного уровня выбросов углерода к 2050 году.

На сегодняшний день по разным оценкам во всём мире ежегодно заканчивают свой жизненный цикл от 20 до 70 миллионов жёстких дисков. Только Microsoft в 2022 году уничтожила два миллиона жёстких дисков, причём процент разобранных и переработанных устройств компания не сообщила.

В Швейцарии научились выгодно извлекать редкоземельные металлы из электронных отходов

Согласно статистике, из электронных отходов в Европе извлекается менее 1 % содержащихся в них редкоземельных элементов. Это делает регион крайне зависимым от поставок стратегического сырья из Китая, которое могло бы с выгодой извлекаться из электронного мусора на месте. Учёные из Швейцарии сделали шаг в этом направлении, создав технологию быстрого и недорого извлечения редкоземельных элементов из техники, вышедшей из употребления.

 Источник изображения: ETH Zurich

Источник изображения: ETH Zurich

Коллектив химиков из Высшей технической школы Цюриха (ETH Zurich) поставил перед собой цель выгодно извлекать редкоземельные элементы именно из мусора, хотя технически эти же реакции можно использовать для получения ценного сырья из руды. Редкоземельные элементы химически связаны с другими веществами как в изделиях, так и в руде, но переработка электронных отходов стоит на ступеньку выше в экологических приоритетах и поэтому важнее других инициатив.

Отправной точкой для исследования стало изучение тетратиометаллатов — неорганических молекул, содержащих четыре атома серы вокруг вольфрама или молибдена. Эти молекулы связывают металлы в природных ферментах и даже используются для противораковой терапии и при нарушениях обмена меди в организмах людей. Аналогичным образом тетратиометаллаты можно было бы приспособить для связывания редкоземельных элементов в составных растворах.

Свою работу с тетратиометаллатами учёные начали с извлечения европия из слоя люминофора ламп дневного света. Последние годы Швейцария избавляется от ламп дневного света, включая энергосберегающие, отправляя их на свалки за пределами страны. Вместе с лампами уходит потенциально ценное сырьё, которое также пропадает на свалках. В процессе экспериментов учёные разработали технологию выгодного извлечения европия из люминофора ламп.

Более того, предложенное решение помогло извлекать из лома в 50 раз больше европия, чем в случае предыдущих альтернативных техпроцессов. На волне успеха группа учёных создала стартап REEcover для коммерциализации технологии извлечения редкоземельных элементов из отходов электроники и обещает таким же образом извлекать из мусора другие редкие химические вещества, в которых Европа так нуждается.

Учёные открыли 100-% эффективный метод преобразования углекислого газа в топливо и химреактивы

Учёные придумали множество реакций по превращению углекислого газа в топливо или химреактивы, но все они имеют недостатки и далеки от 100-% эффективности. Такие реакции ведут к побочным продуктам в виде водорода или карбонатов и зря расходуют энергию. Но учёные из США придумали техпроцесс, в ходе которого происходит абсолютно эффективное преобразование CO2 в топливо или химические реактивы с использованием дешёвого цинкового катализатора, что меняет всё.

 Источник изображения: Nature

Источник изображения: Nature

Открытие сделали исследователи из Школы молекулярной инженерии Притцкера Чикагского университета (UChicago Pritzker School of Molecular Engineering). Рецензируемая публикация по работе вышла в журнале Nature. Учёные поставили перед собой цель создать условия для высочайшего контроля молекул воды в растворе, чтобы каждый протон в электрохимическом процессе преобразования CO2 во что-то полезное расходовался не на пустышки типа образования газообразного водорода или карбонатов, а вовлекался в синтез синтетического топлива или химических реактивов: этанола, метилового спирта, муравьиной кислоты и других соединений.

«Представьте, что мы можем получать экологически чистое электричество от солнца и ветра, а затем использовать это электричество для преобразования любого углекислого газа обратно в топливо», — поделился своей мечтой первый автор статьи Реджи Гомес (Reggie Gomes).

Исследователи не стали изобретать велосипед, а воспользовались хорошо известной реакцией электрохимического восстановления диоксида углерода (CO2R, electrochemical carbon dioxide reduction). В ходе этой реакции углекислый газ в присутствии воды разлетается на атомы углерода, кислорода и водорода как бильярдные шары после первого удара. Задача состоит в том, чтобы в итоге собрать необходимые молекулы без образования побочных продуктов. Учёные решали её с помощью получения контроля над поведением молекул воды в растворе. Для этого они игрались с его кислотностью и регулировали электрохимические и электростатические связи молекул.

Наилучший результат был получен в присутствии катализаторов из золота, серебра и платины. Эти металлы наиболее эффективно подавляли реакции образования водорода в процессе электрохимической реакции. Но для массового производства химреактивов и синтетического топлива это не годится — они получатся буквально золотыми. Поиск привёл к катализаторам из обычного цинка, которого в земных недрах более чем достаточно и по бросовой цене.

«На данный момент лучший способ сделать это [преобразовать CO2] электрохимически при комнатной температуре — это использовать драгоценные металлы. Золото и серебро могут немного подавлять реакцию выделения водорода, — поясняют авторы работы. — Благодаря нашему открытию мы теперь можем использовать распространенный на Земле металл цинк, потому что у нас теперь есть отдельный способ контроля воды».

В ООН бьют тревогу: мир накрывает цунами электронного мусора, а в землю закапываются миллиарды долларов

Свежий отчёт экспертов ООН показал, что скорость производства электронного мусора в пять раз больше, чем сообщается о его переработке. Это буквально ежегодно зарывает в землю миллиарды долларов США, попутно нанося вред экологии и здоровью граждан. Только 1 % спроса на редкие элементы удовлетворяется за счет вторичной переработки и эта статистика только ухудшается.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Согласно отчету МСЭ и ЮНИТАР, 62 млн т образовавшихся в 2022 году электронных отходов способны заполнить 1,55 млн 40-тонных грузовиков — этих машин хватит, чтобы бампер к бамперу опоясать Землю по экватору. Из этого объёма, что задокументировано, переработано всего 22,3 % электронного мусора. Как следствие, в землю и на свалку было отправлено ценных (не извлечённых) ресурсов на сумму $62 млрд, что также увеличило риски загрязнения природной среды.

Анализ показал, что количество электронных отходов во всём мире каждый год увеличивается на 2,6 млн т. Тем самым к 2030 году ежегодный объём производства отходов достигнет 82 млн т или на 33 % больше, чем в 2022 году. Всё это, вновь подчёркивают в ООН, несёт риск здоровью людей в виде токсичных веществ и соединений, которые могут повредить мозг человека и нервную систему в целом.

Более того, с учётом уже сложившейся практики по переработке эксперты заявляют, что без кардинальных изменений в этой сфере доля переработанного мусора будет снижаться. В частности, с 22,3 % в 2022 году до 20% в 2030. К этому приведут технологический прогресс, более высокое потребление, ограниченные возможности ремонта, более короткие жизненные циклы продукции, растущая «электронизация» общества, недостатки дизайна и неадекватная инфраструктура обращения с электронными отходами.

В отчёте отмечается, что если бы страны смогли довести уровень сбора и переработки электронных отходов до 60 % к 2030 году, выгоды, в том числе за счет минимизации рисков для здоровья человека, превысили бы затраты более чем на $38 млрд.

Кроме того, в отчёте сказано, что мир «остается потрясающе зависимым» от нескольких стран в отношении редкоземельных элементов, несмотря на их уникальные свойства, имеющие решающее значение для будущих технологий, включая производство возобновляемой энергии и электронную мобильность. Эксперты ООН призывают менять подходы к сбору и утилизации электронных отходов, включая поддержку ремонта и продление срока службы электроники. Полный 37-страничный отчёт доступен по ссылке.

2,5 тонны отработанных аккумуляторов с МКС сгорели в атмосфере Земли

Как и ожидалось, на этих выходных в атмосферу Земли вошёл блок Exposed Pallet 9 (EP9), состоящий из отработанных аккумуляторных батарей, которые использовались на Международной космической станции. Этот объект весом 2630 кг был сброшен с орбитальной станции в 2021 году и с тех пор кружил на орбите нашей планеты. Скорее всего, он полностью сгорел в атмосфере, но не исключено, что отдельные элементы достигли поверхности планеты.

 Истчоник изображения: NASA

Источник изображения: NASA

Представитель Национального управления по аэронавтике и исследованию космического пространства (NASA) США Сандра Джонс (Sandra Jones) заявила, что ведомство «провело тщательный анализ» мусора, находящегося в EP9 и пришло к выводу, что он безопасно войдёт в атмосферу Земли. Отмечается, что это был самый массивный объект, когда-либо выброшенный за пределы орбитальной станции. Блок EP9 вошёл в атмосферу в то время, когда он пролетал между Мексикой и Кубой. «Мы не думаем, что какая-то часть уцелела при входе в атмосферу», — добавила Сандра Джонс, комментируя данный вопрос.

Европейское космическое агентство (ESA) также отслеживало траекторию полёта EP9. В опубликованном ранее на этой неделе заявлении ведомства говорилось, что вероятность того, что какая-то часть космического мусора не сгорит в атмосфере и упадёт на человека «очень низкая». При этом ESA допускало, что «некоторые части могут упасть на Землю». По подсчётам астрофизика Джонатана Макдауэлла (Jonathan McDowell), около 500 кг мусора должно было упасть на поверхность Земли.

По данным ESA, риск того, что какая-то часть космического мусора упадёт на человека примерно в 65 тыс. раз ниже, чем риск поражения молнией. Скорее всего, вероятность такого исхода действительно крайне мала, поэтому NASA и отправило 2,5-тонный блок в неконтролируемый полёт. Это случилось 11 марта 2021 года и с тех пор отработанные аккумуляторы находились на орбите Земли, облетая планету примерно каждые 90 минут. Под воздействием разреженной атмосферы на низкой околоземной орбите скорость блока постепенно замедлялась, пока наконец на этой неделе гравитация не втянула его обратно в атмосферу.

Блок EP9, в состав которого входили шесть новых литий-ионных аккумуляторных батарей, доставил на МКС японский корабль HTV. Позднее астронавты с помощью роботизированного манипулятора заменили ими устаревшие никель-водородные батареи. Девять старых аккумуляторов разместили на платформе EP9 и через некоторое время роботизированный манипулятор отправил их в свободный полёт. Отметим, что такой способ утилизации не свойственен для NASA. Дело в том, что программу кораблей HTV свернули в 2020 году, а ни один другой грузовой корабль не был предназначен для того, чтобы забрать со станции платформу с батареями. Из-за этого было принято решение утилизировать аккумуляторы в ходе неконтролируемого полёта, который неизбежно завершится входом в атмосферу Земли.

В США разрабатывают лопасти ветрогенераторов, внутри которых растут грибы — это решит проблему утилизации лопаток

Подавляющее большинство лопастей ветряных турбин окажутся на свалке, что в значительной степени нивелирует их вклад в низкоуглеродную энергетику. К 2050 году это составит свыше 43 млн тонн неперерабатываемых отходов. Учёные из Калифорнийского университета в Дэвисе занялись вопросом экологической утилизации лопаток ветряных турбин, положив в основу их изготовления мицелий грибов, органический субстрат и каркас из бамбука.

 Источник изображений: University of California, Davis

Источник изображений: University of California, Davis

Группа исследователей занялась вопросами совместимости мицелия ряда грибов, включая съедобные, субстратов и материалов для каркасов. Разработчики уверены, что мицелий в сочетании с субстратом из органических отходов способен заменить полиуретан и акрил. Собственно, разработка органических лопастей началась с проекта 2018 года по созданию органического шлема для велосипедистов с подкладкой из мицелия.

Благодаря попавшему в группу выходцу из Китая нашлось кому плести каркас лопасти из бамбука. Без этого специалиста, признаются в университете, развитие проекта не перешло бы в фазу испытаний прототипа. Учёные готовятся испытать органическую лопасть с мицелием внутри на турбине мощностью 1 кВт и с имитацией скорости ветра до 137 км/ч. Если испытания пройдут успешно, то можно будет начинать говорить с настоящими производителями лопаток, ведь вопрос масштабирования проблем не принесёт, уверены учёные.

Менее экологически чистый, но более надёжный способ утилизации лопастей ветряных турбин предлагают немцы. Они создали лопасти и подобрали к ним кислоты, которые растворяют эпоксидную смолу до разделения лопастей на составные материалы. И такие лопасти уже дают первую энергию.

Глобальная переработка литиевых батарей к 2030 году превысит 1 ТВт·ч

По данным агентства TrendForce, быстрые темпы внедрения транспорта на новых источниках энергии (NEV) стимулировали рост использованных в мире тяговых аккумуляторов, а рост популярности хранилищ энергии — увеличение масштаба внедрения литий-железо-фосфатных батарей. В результате растёт число отработавших своё АКБ, благодаря чему переработка превращается в выгодный бизнес.

 Источник изображения: Sungrow EMEA/unsplash.com

Источник изображения: Sungrow EMEA/unsplash.com

Ожидается, что к 2030 году ёмкость этого рынка превысит 1 ТВт·ч, из общей доли на литий-железо-фосфатные аккумуляторы будет приходиться 58 %. Хотя на рынке уже сегодня довольно много компаний, занимающихся переработкой аккумуляторов, пока реальные масштабы этого бизнеса далеки от необходимых. Как заявляют в агентстве, пока необходимо решить ряд проблем в индустрии переработки — последняя находится на ранних стадиях развития и около 70 % перерабатываемых АКБ поступают с аккумуляторных заводов — это либо дефектные экземпляры, либо просто отходы производства. Кроме того, индустрия переработки нуждается в более совершенной системе стандартизации.

Например, в Китае начали внедрять переработку батарей с 2020 года. Только в 2021 году зарегистрировано более 10 тыс. новых компаний в этой сфере, примерно вчетверо больше, чем в 2020 году. При этом внесённых в «белый список» компаний, полностью соответствовавших стандартам индустрии переработки, на конец года было всего 45, а объём переработанных литий-ионных аккумуляторов в Китае в 2021 году составил менее 300 тыс. тонн.

 Источник изображения: TrendForce

Источник изображения: TrendForce

По расчётам экспертов, расчётная ёмкость используемых в электромобилях аккумуляторов превысит к 2030 году 3ТВт·ч, а в Китае — около 45 % от общемирового объёма. Таким образом, особую важность приобретёт повышение эффективности использования батарей, как для преодоления дефицита ресурсов, так и для перехода на зелёную энергетику в целом.

Сегодня, по данным TrendForce, переработка литий-ионных АКБ в Китае делится на каскадную утилизацию и переработку и восстановление. Так, каскадная утилизация и переработка применяется для источников резервного питания, малых энергохранилищ и низкоскоростного микротранспорта в случаях, если ёмкость АКБ упала ниже 80 %.

В сфере энергохранилищ речь идёт о демонстрационных экспериментальных проектах, не касающихся крупных энергохранилищ — речь идёт преимущественно о демонтаже отработавших своё АКБ для восстановления ценных металлов вроде лития, кобальта и никеля, а также использования их в производстве новых аккумуляторов.

В этом году 5,3 млрд мобильников станут электронным мусором

Покупая новый смартфон или кнопочный телефон, отнюдь не все отправляют свои старые устройства в переработку или продают. Многие наоборот зачем-то хранят их или даже просто выбрасывают, в обоих случаях, по сути, превращая их в электронный мусор. Подобная судьба только в этом году постигнет несколько миллиардов устройств.

 Источник изображения: Daniel Romero/unsplash.com

Источник изображения: Daniel Romero/unsplash.com

По данным неправительственной организации WEEE Forum, ссылающейся на статистику Digital Trends, сегодня в мире эксплуатируются порядка 16 млрд мобильных телефонов (включая смартфоны) и по итогам этого года электронными отходами станут 5,3 млрд мобильных устройств. Чтобы составить представление об их количестве, WEEE Forum предлагает считать, что каждая модель имеет толщину порядка 9 мм. Если положить все выброшенные за этот год смартфоны один на другой, образуется «стопка» высотой в 50 тыс. км — многие спутники летают ниже.

При этом, несмотря на всё золото, медь, серебро, палладий и другие ценные элементы, используемые в производстве смартфонов, большинство отработавших своё устройств или окончит свои дни в дальних углах шкафов, или отправятся в мусорные баки, а после на свалки и в мусоросжигатели.

WEEE Forum приурочил публикацию статистики к Международному дню электронных отходов (International E-Waste Day), отмечаемому сегодня, 14 октября. По данным организации, мобильные телефоны и смартфоны сегодня являются одними из самых накапливаемых электронных отходов. Опрос 8755 домохозяйств в шести странах Евросоюза показал, что многие хранят старые устройства по следующим причинам:

  • для возможного использования в будущем (46 %);
  • планируя отдать их или продать (15 %);
  • из сентиментальных соображений (13 %);
  • потому что они могут стать ценными в будущем (9 %);
  • потому что непонятно, как от них избавиться (7 %);
  • так как нет времени, забыли о нём, не занимают много места (3 %) и по другим причинам.
 Источник изображения: Gian Cescon/unsplash.com

Источник изображения: Gian Cescon/unsplash.com

В прошлом году Samsung раскрыла данные, согласно которым в рамках реализуемой компанией программы переработки ей передано всего 0,0019 % проданных с 2015 года смартфонов. Подразумевается, что многие из оставшихся ещё используются исходными покупателями, проданы на вторичном рынке или просто выброшены. По данным экспертов, в последнее десятилетие рост числа электронных отходов намного выше роста темпа их утилизации.


window-new
Soft
Hard
Тренды 🔥