Сегодня 31 марта 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → чёрная дыра
Быстрый переход

Центр нашей галактики — это настоящая «мясорубка звёзд» и учёные объяснили почему

Центр нашей галактики, Млечного Пути, — интересное во всех смыслах место. Во-первых, там находится сверхмассивная чёрная дыра Стрелец A* (Sgr A*). Во-вторых, там сосредоточено столько всевозможных объектов — от пыли и газа до звёзд и чёрных дыр, — что учёные порой теряются в этом многообразии. И хотя всё это скрыто от нас пеленой межзвёздного вещества, сквозь которую непросто пробраться, модели и статистика помогают делать удивительные открытия.

 Источник изображения: Mark Garlick/Science Photo Library

Источник изображения: Mark Garlick/Science Photo Library

Исследование центра Млечного Пути в инфракрасном и радиодиапазоне позволяет находить там звёзды даже за плотными облаками пыли. Гораздо сложнее искать в этом «саване» чёрные дыры звёздной массы. Согласно моделям формирования звёзд, в ближайшей к сверхмассивной чёрной дыре Стрелец A* области может находиться около 300 чёрных дыр звёздной массы. Как известно, при гибели достаточно крупных звёзд их ядра коллапсируют и превращают останки звезды в чёрную дыру. Это поддаётся учёту и статистике, что позволяет примерно оценить количество чёрных дыр вблизи центра галактики.

Новая работа идёт дальше и утверждает, что чёрных дыр звёздной массы вблизи центра Млечного Пути гораздо больше — не сотни, а сотни миллионов и даже миллиарды. Учёные называют центр нашей галактики настоящей «мясорубкой звёзд» и «роем чёрных дыр звёздной массы».

Основная идея этой новой модели заключается в том, что центральная область вблизи Стрельца A* по сравнению с остальной частью галактики чрезвычайно богата газом и пылью. Это означает, что там легко могут формироваться массивные звёзды O- и B-типа. Такие звёзды живут очень недолго и умирают как сверхновые. Их ядра коллапсируют в чёрные дыры, а оставшееся вещество рассеивается и может быть использовано для рождения новых звёзд. Со временем, по мере появления и гибели звёзд в этом регионе, чёрные дыры будут неизбежно накапливаться.

В конце концов, в этой области скопится столько чёрных дыр, что столкновения между ними и звёздами станут обычным явлением. Чёрные дыры будут постепенно разрывать звёзды на части, перемешивая вещество в этой области и ускоряя формирование новых звёзд и чёрных дыр. Авторы исследования назвали эту модель «звездодробилкой».

Если эта гипотеза верна, то в центре нашей галактики могут находиться миллионы или даже миллиарды чёрных дыр звёздной массы на один кубический парсек (парсек равен 3,26 светового года). Любая звезда, попавшая в эту область, окажется в зоне риска. Чтобы подтвердить свою концепцию, учёные обратились к статистическому анализу.

При заданной плотности чёрных дыр в регионе можно вычислить среднее время, по истечении которого произойдёт столкновение звезды с чёрной дырой. Время столкновения зависит от количества чёрных дыр и размера звезды: чем больше чёрных дыр, тем короче этот срок, и чем массивнее звезда, тем выше вероятность столкновения.

Проведя расчёты и сравнив их с наблюдениями, учёные выяснили, что в центральном регионе галактики меньше всего звёзд O-типа и больше B-типа. Оба этих типа представляют собой массивные, но короткоживущие звёзды. Они хорошо заметны благодаря своим горячим оболочкам, что делает возможным их статистический анализ. В итоге расчёты показали, что в указанной области на один кубический парсек приходится около 100 миллионов чёрных дыр звёздной массы. Это невероятно высокая плотность, которая радикально меняет наше представление о процессах в центре галактики.

Косвенно эти расчёты подтверждаются наблюдениями более чем десятка звёзд-беглянок, которые вырываются из центра галактики со скоростями, превышающими обычные внутригалактические значения. Такие колоссальные скорости звёзды могли набрать только при близком взаимодействии с чёрными дырами, разогнавшись в их гравитационных колодцах до значений, позволяющих покинуть Млечный Путь. Число таких звёзд слишком велико, что указывает на высокую плотность чёрных дыр в этом регионе.

Учёные открыли чёрные дыры «на максималках» — сегодня таких уже нет

Год назад космический телескоп «Джеймс Уэбб» открыл в ранней Вселенной новые объекты, которые назвали «маленькие красные точки» (Little Red Dots, LRD). На датчиках обсерватории они буквально выглядели как точки с предельно большим красным смещением. С тех пор учёные выдвинули ряд гипотез о природе этих объектов, что позволяет находить объяснение их происхождению. Новая работа проливает больше света на эту загадку ранней Вселенной.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Первым и во многом верным предположением стало то, что «маленькие красные точки» — это активные ядра галактик (квазары). Особенность LRD заключалась в том, что, в отличие от квазаров, они очень слабо излучали в радиодиапазоне и рентгеновском спектре. Сверхмассивные чёрные дыры, находящиеся внутри далёких галактик, так себя не ведут — они буквально пылают в рентгеновском диапазоне.

Одна из вещей, которую учёные быстро выяснили об этих объектах, — их спектры сильно расширены из-за эффекта Доплера. Это указывает на то, что газ, излучающий свет, вращается вокруг центральной области с огромной скоростью — более 1000 километров в секунду.

Для углублённого изучения «маленьких красных точек» учёные воспользовались приборами «Уэбба» и собрали спектры высокого разрешения для 12 таких объектов. Затем полученные данные сравнили с моделями сверхмассивных чёрных дыр. Анализ показал, что всё может происходить внутри молодого галактического облака. Внутри галактики с очень большой скоростью должен вращаться диск аккреции, окружающий чёрную дыру. При этом галактическое облако должно быть сильно ионизированным. В таком случае окружающее галактику плотное облако свободных электронов действительно поглощало бы большую часть рентгеновского и радиоизлучения.

С другой стороны, чтобы LRD достигли наблюдаемой светимости в инфракрасном диапазоне, мощность излучения чёрной дыры должна быть на максимальном уровне. Наблюдения показывают, что эта мощность близка к пределу Эддингтона, после которого чёрная дыра своим «светом» просто разогнала бы вещество вокруг себя и галактики, включая ионизированный газ, маскирующий рентгеновское и радиоизлучение.

 Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

Всё это говорит о том, что «маленькие красные точки» — это очень молодые сверхмассивные чёрные дыры, которые быстро растут и достигают зрелости. Это подтверждается оценками их массы, согласно которым она составляет от 10 000 до 1 000 000 солнечных масс, что намного меньше, чем у типичных сверхмассивных чёрных дыр. Эта модель также помогает объяснить, почему мы не видим более близких LRD с меньшим красным смещением. В процессе своей бурной эволюции, работая на пределе мощности, они быстро рассеивают окружающее их ионизированное облако и превращаются в типичные квазары, которых во Вселенной предостаточно и к которым учёные давно привыкли.

Чёрные дыры сами себе готовят пищу, выяснили астрономы

Астрономы провели ключевое исследование, которое показало, что самые массивные чёрные дыры во Вселенной могут сами готовить себе пропитание. В процессе наблюдения за семью скоплениями галактик с помощью рентгеновского телескопа «Чандра» и оптического телескопа VLT в Чили были получены новые доказательства того, что вспышки из чёрных дыр могут охлаждать газ, необходимый для их собственного питания и дальнейшего роста.

 Источник изображения: NASA

Источник изображения: NASA

Как известно, массивные галактики в центрах скоплений содержат огромные чёрные дыры, которые поглощают пыль и газ в диске аккреции, что ведёт к выбросу энергии с их полюсов в виде джетов. Ранее была представлена модель, которая предполагала наличие обратной связи между выбросами энергии и поступлением газа в чёрную дыру. Согласно этой модели, джеты и другое интенсивное излучение от чёрной дыры (от центральной перегретой области диска аккреции) отбрасывают пыль и газ из центра галактики и даже далеко за её пределы.

Наблюдения показали, что модель питания с обратной связью имеет право на жизнь. На снимке выше показаны два скопления галактик из семи изученных: слева — Персея, справа — Центавра. Фиолетовые струи — это исходящее от чёрных дыр рентгеновское излучение (свет от нитей перегретого газа). Розово-красные нити на изображении получены Очень большим телескопом в Чили в оптическом и инфракрасном диапазонах. Эти нити изображают тёплый (остывающий) газ.

Анализ данных помог связать нити горячего и холодного газов, показав, что их яркость и архитектура взаимосвязаны. Вылетающее из чёрных дыр мощное излучение вызывает турбулентность в окружающем газе, заставляет его охлаждаться, а затем этот газ возвращается в чёрные дыры в виде новых порций питания. И так по кругу. Более того, открытие дало новое понимание того, что этот механизм важен не только для чёрных дыр, но также для запуска процесса рождения новых звёзд в галактиках.

Достигнутый прогресс стал возможен благодаря инновационной технологии, которая изолирует горячие нити в рентгеновских снимках «Чандры» от других структур, включая большие полости в горячем газе, создаваемые струями чёрной дыры.

Наконец, обнаруженная взаимосвязь между горячими и холодными нитями проявляет удивительное сходство с той, что обнаружена в хвостах галактик-медуз. За такими галактиками тянутся огромные газопылевые хвосты по мере их прохождения через пространство. Это сходство раскрывает неожиданную космическую связь между двумя объектами и подразумевает, что в этих объектах происходит схожий процесс.

«Уэбб» нашёл в космосе «маленькие красные точки» с необъяснимо огромными чёрными дырами

Космическая обсерватория «Джеймс Уэбб» позволила заглянуть в раннюю Вселенную, где учёные увидели много неожиданного, что способно изменить наше представление о её эволюции. Например, развитые не по годам галактики и слишком большие чёрные дыры, что трудно объяснить общепринятыми теориями. Но, как и любой инструмент, «Уэбб» позволяет находить ответы на заданные вопросы. Необходимо лишь время и наблюдения.

 Источник изображения: ИИ-генерация Кандинский 3.1/3DNews

Источник изображения: ИИ-генерация Кандинский 3.1/3DNews

Весной 2024 года впервые стало известно об открытии «Уэббом» нового класса галактик. На инфракрасных изображениях, полученных обсерваторией, обнаружилось много «красных точек», которые при дальнейшем изучении были классифицированы, как далёкие галактики. Их так и назвали галактиками «маленьких красных точек» (Little red dots, LRD). Позже было выяснено, что эти галактики могут содержать в своих центрах сверхмассивные чёрные дыры, иначе говоря, считаться квазарами или активными ядрами галактик.

Но это были не те квазары, к которым мы привыкли после их открытия около 70 лет назад. Активные ядра «маленьких красных точек» не наблюдались в рентгене и, в целом, были относительно слабосветящимися. Новая работа, которая пока присутствует лишь на сайте препринтов arXiv, была направлена на более детальное изучение LRD-галактик и, похоже, вскрыла их подноготную.

«В 2023 и 2024 годах мы и другие группы в первых наборах данных "Уэбба" обнаружили в ранней Вселенной ранее скрытую популяцию AGN [активных ядер галактик], — сказал Йоррит Маттее (Jorryt Matthee), ведущий автор работы. — Свет, который мы видим от этих объектов, в частности более красный свет, исходит от аккреционных дисков вокруг сверхмассивных чёрных дыр. Эти объекты стали известны как "маленькие красные точки", потому что именно так они появляются на изображениях JWST».

Благодаря дополнительным наблюдениям и расчётам, учёные смогли точно составить 3D-карту расположения семи LRD-галактик. Все идентифицированные галактики находились удалении около 1,5 млрд световых лет от Большого взрыва. Оценка звёздного населения галактик показала, что на центральные сверхмассивные чёрные дыры в каждой из них приходится примерно по 10 % массы. Это чрезвычайно много — до 1000 раз массивнее, чем принято было считать. В окружающих нас галактиках и там, где мы можем определить массу СЧД, на долю этих объектов приходится не более 0,01 % массы. При этом диаметр галактик LRD составляет всего единицы процентов от диаметра, скажем, Млечного Пути.

 Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

С другой стороны, открытие галактик «маленьких красных точек» может стать шагом к объяснению такого феномена, как слишком быстрый рост сверхмассивных чёрных дыр. В ранней Вселенной обнаружено много непомерно больших СЧД менее чем через миллиард лет после Большого взрыва, что нельзя объяснить общепринятой теорией эволюции этих объектов.

Существует гипотеза, что они изначально были большими, родившись из массивных затравок из облаков первичной материи. Открытие галактик LRD может намекать на иной вариант развития событий, а именно на высокую концентрацию вещества в пространстве ранней Вселенной, что позволяло чёрным дырам питаться на пределе своих возможностей и быстро набирать массу.

Астрономы получили наиболее детальное инфракрасное изображение активного ядра галактики

Учёные из США использовали инновационный метод получения совместных изображений двух оптических телескопов для создания наиболее детального инфракрасного изображения активного ядра галактики — места расположения сверхмассивной чёрной дыры. Ранее для подобной цели метод интерферометрии был использован при получении снимка чёрных дыр в радиодиапазоне Телескопом горизонта событий (EHT). С оптикой всё намного сложнее, но зато наглядно и познавательно.

 Источник изображения: NASA

NGC 1068. Источник изображения: NASA

Совмещать два изображения с оптических телескопов с целью повышения разрешения итоговой картинки пока удаётся лишь при непосредственной синхронизации по оптике и при относительно близком расположении телескопов. Например, такие режимы возможны на комплексе оптических телескопов VLT, где оборудование для оптической интерферометрии было предусмотрено с самого начала. Учёные из США пока лишь делают первые шаги в этом направлении, создав условия для оптической интерферометрической съёмки на телескопе LBT в штате Аризона.

Телескоп LBT или Большой бинокулярный телескоп — это два расположенных бок о бок зеркала. По сути это спаренные телескопы-близнецы, диаметр зеркала каждого из которых достигает 8,4 м. До прошлого года телескопы использовались по отдельности, например, наблюдая за одним и тем же объектом с разными фильтрами (на разных динах волн). Впервые режим интерферометра был задействован для наблюдения за вулканами спутника Юпитера Ио. Результат настолько вдохновил учёных, что они решили взглянуть таким же образом на другие объекты Вселенной. В частности, их заинтересовали детали самого близкого к Млечному Пути активного ядра галактики NGC 1068.

Активные ядра галактик — это следствия массивного падения вещества на сверхмассивные чёрные дыры в центрах галактик. Сами чёрные дыры невидимы во всех диапазонах, но до падения вещества на них оно разогревается до миллионов градусов и ярко светится во всех диапазонах. Эти излучения взаимодействуют с пылью и газом вблизи центров галактик и даже за их пределами. Это взаимодействие имеет обратную связь, которую можно проследить только при наличии высокого разрешения. Например, на представленном LBT изображении прослеживается зависимость движения пыли от излучения в радиодиапазоне и обратная связь между ними. Без снимка в инфракрасном диапазоне с рекордной детализацией эту связь было невозможно увидеть в таких деталях.

«Активное ядро галактики в NGC 1068 особенно яркое, поэтому это была прекрасная возможность протестировать этот метод, — поясняют учёные. — Это самые точные снимки активного ядра галактики с самым высоким разрешением, сделанные до сих пор».

NASA стало чаще находить скрытые сверхмассивные чёрные дыры, но учёным этого мало

Считается, что в центре почти всех галактик находятся сверхмассивные чёрные дыры (СЧД), которые серьёзно влияют на их эволюцию. Подтвердить это можно было бы прямым наблюдением, благо СЧД с массой от сотен миллионов до миллиардов солнечных масс — это как слон в посудной лавке: их сложно не заметить. Однако проблема в том, что чёрные дыры хорошо видны только в том случае, если они обращены к нам торцом. Если же они расположены ребром, пыль и газ надёжно скрывают даже самые яркие из них.

 Источник изображений: NASA

Облако пыли вокруг СЧД в инфракрасном, видимом и рентгеновском свете (внизу), где справа диапазон сильных энергий. Источник изображений: NASA

Предыдущие исследования показывают, что пыль и газ скрывают около 15 % всех сверхмассивных чёрных дыр. Теория же предполагает, что таких объектов должно быть около 50 %. Новая работа, основанная на архивных данных телескопа IRAS 1980-х годов и запущенного в 2012 году рентгеновского телескопа NuSTAR (Nuclear Spectroscopic Telescope Array), позволила учёным из NASA сделать вывод, что за облаками пыли и газа скрываются 35 % сверхмассивных чёрных дыр. Этот результат лучше, чем показывали предыдущие исследования, но всё ещё не дотягивает до теоретических ожиданий.

Более точное знание о количестве сверхмассивных чёрных дыр и их расположении в центрах галактик необходимо для понимания эволюции последних. СЧД отбирают вещество у галактик, которое могло бы быть использовано для формирования новых звёзд (без чёрных дыр галактики были бы гораздо больше, чем мы наблюдаем). Кроме того, СЧД могут останавливать звездообразование, поглощая большие объёмы вещества. Это приводит к мощным выбросам энергии и частиц, которые выталкивают вещество из галактик.

 Обсерватория Nuclear Spectroscopic Telescope Array

Обсерватория Nuclear Spectroscopic Telescope Array

Поскольку охватить Вселенную невозможно, учёные делают выводы о процессах в ней на основе относительно небольшой выборки объектов. Поэтому важно знать, сколько СЧД может быть скрыто за облаками пыли, чтобы сделать выборку максимально точной. К счастью, наблюдения в инфракрасном диапазоне и рентгеновских лучах высоких энергий позволяют обнаруживать СЧД даже тогда, когда они обращены к нам ребром, а не яркими полюсами с аккреционным диском, джетами и световыми эффектами. Рентгеновское излучение высоких энергий и инфракрасный свет вызывают вторичное свечение облаков пыли и газа, что позволяет учёным обнаружить спрятанные сверхмассивные чёрные дыры. Именно благодаря этим методам учёные NASA смогли выявить больше СЧД там, где другие наблюдения оказались бессильны.

Чёрные дыры оказались безопаснее, чем считали учёные — рядом с ними могут стабильно «жить» звёзды и планеты

Расположение сверхмассивных чёрных дыр в центрах галактик кажется разрушительным для всего, что находится рядом. Однако астрономы сделали открытие, которое снижает угрозу, исходящую от таких объектов. Вблизи центральной чёрной дыры впервые обнаружена двойная звёздная система, которой опасное соседство оказалось нипочём. Это можно сравнить с оазисом спокойствия рядом с бурлящим водоворотом. Остаётся только найти там планеты — и это лишь вопрос времени.

 Источник изображения: ESO

Источник изображения: ESO

Открытие, как это часто бывает, произошло случайно. В центре Млечного Пути был выявлен новый класс объектов, получивших название G-объекты. Всего обнаружено шесть таких объектов, первый из которых был открыт в 2005 году. Предполагается, что это звёзды, окружённые плотным облаком газа и пыли. На вид они напоминают газопылевые облака, однако их гравитационное поведение соответствует звёздам. Все шесть объектов взаимодействуют со сверхмассивной чёрной дырой Sgr A* (Стрелец A*) в центре нашей галактики. В процессе изучения этих объектов учёные случайно обнаружили звёздную систему D9, которая оказалась двойной.

Судя по всему, двойная звёздная система смогла эволюционировать даже в условиях сильного гравитационного взаимодействия со сверхмассивной чёрной дырой. Она с невероятной скоростью вращается вокруг Sgr A*, но это не мешает ей развиваться так же, как звёздам на периферии галактики. Это открытие даёт надежду найти в центре галактики — в скоплении объектов с интенсивными взаимодействиями — не только стабильные звёзды, но и планетные системы.

«Чёрные дыры не так разрушительны, как мы думали. Кажется правдоподобным, что обнаружение планет в центре галактики — всего лишь вопрос времени», — говорят учёные.

Вместе с тем астрономы предупреждают, что такие «стабильные» отношения могут быть мимолётными в масштабах жизни звёзд. Обнаруженная двойная система ещё молода — её возраст составляет всего 2,7 млн лет. Для сравнения, динозавры жили на Земле дольше, чем эти звёзды. Не исключено, что учёным просто повезло застать их в стабильном состоянии. Даже если это так, открытие намекает, что в центрах галактик может быть больше жизни во всех смыслах этого слова. Поэтому необходимы новые наблюдения и исследования таких областей космоса.

Учёные впервые увидели, как чёрная дыра взорвала неизвестный объект мощной струёй плазмы

Рентгеновский телескоп NASA «Чандра» впервые засёк разрушительное воздействие релятивистской струи вещества и энергии — джета из сверхмассивной чёрной дыры — на что-то материальное. Джет врезался в какой-то неизвестный внегалактический объект, и струя после этого прочертила в пространстве латинскую букву «V» с рукавами по 700 световых лет каждый. «Звезда Смерти» из далёкой-далёкой галактики отдыхает — представить такое оказалось не по силам даже фантастам.

 Источник изображения: NASA

Источник изображения: NASA

Сюрприз преподнесла близкая к Млечному Пути галактика Центавр А (не путать с Альфой Центавра, близкой к Земле звёздной системой). Это интересный объект во многих смыслах и учёные пристально за ним следят. В данных «Чандра» учёные впервые увидели раздвоение релятивистского джета от чёрной дыры. Причём разделение также наблюдается в рентгеновском диапазоне, что сложно было ожидать от типичного взаимодействия струи с межзвёздными газом и пылью.

Таинственный объект назвали C4. Судя по разлёту «осколков» — это компактный объект, возможно, звезда или иное большое скопление массы. Согласно принятым моделям, джет должен был поразить объект и увлечь его вещество в направлении струи. Между тем, один рукав струи ушёл резко в сторону, тогда как другой сохранил направление вдоль джета. Интрига пока сохраняется. Понадобятся ещё наблюдения, чтобы попытаться понять, какая трагедия разыгралась там в пространстве — за 12 млн световых лет от нашей галактики.

«Джеймс Уэбб» обнаружил в ранней Вселенной невозможно огромные чёрные дыры, и учёные смогли это объяснить

Сделанные космической обсерваторией им. Джеймса Уэбба открытия в ранней Вселенной заставили учёных усомниться в основах современной космологии. В частности, «Уэбб» обнаружил в ранней Вселенной необъяснимо большие чёрные дыры, которые не должны были развиться в процессе эволюции звёзд. Объяснить наблюдаемое несоответствие можно в том случае, если чёрные дыры появились не после смерти первых звёзд, а раньше их — через доли секунды после Большого взрыва.

 Художественное представлние двух сближающихся чёрных дыр. Источник изображения: NASA

Художественное представление двух сближающихся чёрных дыр. Источник изображения: NASA

Идею рождения миниатюрных чёрных дыр или «семян» вскоре после Большого взрыва в своё время высказал физик Стивен Хокинг (Stephen Hawking). Они и сегодня могут находиться во Вселенной, медленно испаряясь в процессе излучения Хокинга. Но, ни одну миниатюрную чёрную дыру учёные так и не смогли обнаружить, как, собственно, и гипотетическое излучении Хокинга. Тем не менее, если «Уэбб» обнаруживает через несколько сотен миллионов лет после Большого взрыва сверхмассивные чёрные дыры, то теория Хокинга лучше других аргументов объясняет, почему так может быть.

Часть затравок чёрных дыр могла попасть в подходящие условия, где концентрация вещества была достаточно большой, чтобы эти объекты быстро набирали массу параллельно с эволюционирующей Вселенной на самых ранних этапах её жизни, доказали учёные. Сверхмассивные чёрные дыры образовались не из звёзд (хотя некоторые — вполне), а эволюционировали параллельно первым звёздам. И как только Вселенная развеяла мрак в эпоху реионизации, она явила последующему взгляду не только первые звёзды и галактики, но также сформировавшиеся сверхмассивные чёрные дыры.

Представившая свои выводы группа астрономов считает, что сделанные ими выкладки должны побудить учёных изменить модели эволюции звёзд, галактик и, собственно, чёрных дыр, а затем проверить эти модели наблюдениями. Возможно, со временем так и произойдёт. Пока работа «Уэбба» — это пиршество для наблюдателей. Теоретики ждут наработки большего объёма материала и пока лишь скептически улыбаются.

Учёные впервые раскрыли форму короны чёрной дыры

Во время солнечных затмений мы видим солнечную корону — яркий ореол вокруг Луны, заслоняющей в такие моменты Солнце. Это светится разреженная внешняя атмосфера звезды с плотностью вакуума и температурой в миллионы градусов — корона Солнца. У чёрных дыр должна быть своя корона, но увидеть её практически нереально, зато возможно обнаружить её присутствие и определить форму.

 Художественное представление диска аккреции у чёрной дыры. Источник изображения: NASA

Художественное представление диска аккреции у чёрной дыры. Источник изображения: NASA

Поиски короны чёрной дыры помогут в определении типов квазаров — активных ядер галактик. Чёрная дыра — это не тот объект, который можно рассматривать в телескоп и делать заключения об увиденном. Строго говоря, чёрные дыры — это всё ещё гипотеза. Неслучайно при присуждении Нобелевской премии по физике в 2020 году за открытие чёрной дыры в центре нашей галактики комитет осторожно написал об открытии «компактного астрофизического объекта», а не о чёрной дыре. Корона чёрной дыры — это ещё более эфемерное явление, чем существование самих чёрных дыр.

Где же у чёрных дыр корона? Известно, что чёрные дыры окружены веществом, которое формирует форму диска или тора в плоскости вращения дыры. Чем ближе вещество к горизонту событий чёрной дыры, тем быстрее оно вращается в диске и тем сильнее нагревается от трения и гравитации. Это уже зона аккреции, из которой вещество падает на чёрную дыру. И где-то на его внутреннем краю вещество превращается в нагретую до миллиардов градусов плазму. Эта сверхразогретая плазма и есть корона чёрной дыры. Другое дело, что обнаружить её и определить форму оказалось непросто.

Если диск аккреции направлен на нас своей плоскостью, то излучение короны в виде рентгеновских лучей теряется в общем излучении чёрной дыры (фактически — в излучении диска аккреции, ведь горизонт событий чёрной дыры никакой свет не покидает). При взгляде на диск аккреции сбоку свет от его центральной области блокируется более холодным веществом по краям. Но, как оказалось, не в случае короны чёрной дыры. Рентгеновское излучение от плазмы короны оказалось способным переотражаться в «бублике» газопылевого диска вокруг чёрной дыры таким образом, чтобы добираться до земного наблюдателя даже при взгляде с торца.

Учёные изучили дюжину таких «затемнённых» чёрных дыр, включая Cygnus X-1 и X-3 в Млечном Пути и LMC X-1 и X-3 в Большом Магеллановом Облаке, подняв данные обсерватории NASA Imaging X-ray Polarimetry Explorer (IXPE), и выяснили, что во всех случаях геометрия и поведение короны у чёрных дыр совпадают. Исходя из этого, геометрия и физика короны должна быть одинаковой как у чёрных дыр звёздной массы, так и у сверхмассивных чёрных дыр. Это означает, что можно собрать больше данных, в том числе, о квазарах, которые, как правило, слишком яркие, что само по себе является помехой для их изучения и любой новый способ исследования будет полезен.

Пара чёрных дыр влетела в межзвёздное облако и устроила «дискотеку» вселенских масштабов

В марте 2021 года в далёкой-далёкой галактике была зарегистрирована вспышка, которую приняли за сверхновую и присвоили ей индекс 2021hdr. Через год там снова полыхнуло. А когда данные начала собирать установка для поиска транзиентов им. Цвикки в Паломарской обсерватории, вспышки стали фиксироваться каждые 60–90 дней. Сверхновые так себя не ведут. Эту «дискотеку» вселенских масштабов устроило что-то другое, и ответ вскоре нашёлся.

 Художественное представление слияния пары чёрных дыр с вовлечением облака газа. Источник изображения: NASA

Художественное представление слияния пары чёрных дыр с вовлечением облака газа. Источник изображения: NASA

Исходя из первых впечатлений, учёные сочли произошедшее приливным разрушением звезды чёрной дырой. Однако продолжительность повторяющихся вспышек оказалась настолько большой, что на все наблюдаемые эффекты не хватило бы никакой звезды. Тут явно было что-то другое.

Несколькими годами ранее группа учёных провела моделирование захвата системой из двух чёрных дыр, вращающихся вокруг общего центра и приближающихся к слиянию, облака молекулярного газа. Эта модель лучше всего объяснила наблюдаемые в районе события 2021hdr вспышки. Две чёрные дыры взбалтывали облако и порционно поглощали его вещество, преобразуя аккрецию в вспышки энергии. Вспышки в рентгеновском и ультрафиолетовом диапазонах позже были обнаружены в этой области космической рентгеновской обсерваторией «Свифт».

 Симуляция явления. Источник изображения: F. Goicovic et al. 2016

Симуляция явления. Источник изображения: F. Goicovic et al. 2016

Собранный в разных диапазонах набор данных позволил рассчитать, что там, на расстоянии примерно 1 млрд световых лет от Земли, в созвездии Лебедя, вокруг общего центра тяжести вращается пара чёрных дыр общей массой 40 млн солнечных масс. Они находятся друг от друга на расстоянии 26 млрд км и совершают один оборот за 130 дней. Свету потребовались бы сутки, чтобы преодолеть пространство между ними. Через 70 тыс. лет эти чёрные дыры сольются. В их реальности это уже произошло миллиард лет назад, но до нас эхо от этого схлопывания докатится только через пропасть времени.

Если бы не случайно встретившееся на их пути облако межзвёздного газа, мы бы никогда не узнали, что в центре галактики 2MASX J21240027+3409114 происходит такая круговерть из чёрных дыр. Теперь учёные намерены изучить эту галактику внимательнее и оценить, насколько пара сливающихся чёрных дыр влияет на неё и ближайшие звёзды.

В ранней Вселенной обнаружена чёрная дыра, поглощающая материю сверх всяких разумных пределов

В последние годы в ранней Вселенной открыто много сверхмассивных чёрных дыр (СЧД), которые не должны были успеть стать настолько большими ко времени наблюдения. Для них существует чисто физический предел по скорости поглощения массы, который они обычно не могут превзойти. Тем удивительнее было найти чёрную дыру, которая по скорости поглощения вещества превысила теоретический предел в 40 раз.

 Художественное представление неумеренно питающейся чёрной дыры. Источник изображения: NSF NOIRLab

Художественное представление неумеренно питающейся чёрной дыры. Источник изображения: NSF NOIRLab

Открытие сделала группа астрономов из США (из обсерваторий Gemini и NSF NOIRLab). Используя для своих целей космическую обсерваторию им. Джеймса Уэбба они наблюдали некоторое количество галактик в ранней Вселенной по следам наблюдений рентгеновской обсерватории «Чандра». Эти галактики были тусклыми в оптике, но яркими в рентгене, что свидетельствует об активности чёрных дыр в их центрах.

Внимание учёных привлекла галактика LID-568. Точное расположение этого объекта помог установить спектрометр «Уэбба». Галактика LID-568 оказалась на расстоянии 1,5 млрд лет после Большого взрыва. Проведенные оценки показали, что в центре галактики находится активная сверхмассивная чёрная дыра массой 7,2 млн солнечных масс. Это сравнительно небольшая масса для СЧД. Удивило другое. Так называемый предел Эддингтона для этой чёрной дыры был превышен в 40 раз!

Когда на СЧД падает вещество, оно закручивается вокруг неё по спирали. Все чёрные дыры во Вселенной вращаются, поскольку возникли из вращающихся объектов. Чёрная дыра создаёт при этом вокруг себя вращение пространства-времени, заставляя всё падающее на неё также вращаться по сжимающейся спирали (сила гравитации действует в этой области также вбок, а не только в сторону центра).

Сила гравитации и трение, наиболее сильные ближе к чёрной дыре, разогревают вещество в диске аккреции до свечения во всех диапазонах электромагнитного излучения. Это излучение создаёт изнутри давление на падающее на СЧД вещество и не даёт ему падать на чёрную дыру сверх определённой скорости. Этот порог и есть предел Эддингтона (в общем случае он введён для звёзд, удерживающих свои внешние оболочки от падения на ядро), хотя этот порог на относительно короткое время может превышаться и тогда проявляется сверхэддингтоновский эффект, когда темп аккреции значительно превышает эддингтоновский предел.

Похоже, учёные наткнулись на СЧД LID-568 в тот редкий момент, когда она потребляла вещество в режиме сверхэддингтоновского предела. Поэтому дальнейшие наблюдения за этим объектом могут принести массу открытий в эволюции чёрных дыр. Для учёных стало загадкой, как СЧД в ранней Вселенной смогли отъесться до настолько больших регистрируемых масс. К такому могла привести ситуация, когда первые чёрные дыры возникали непосредственно из коллапса облаков материи либо из невероятно огромных первых звёзд (ни одно, ни другое не наблюдалось).

Превышение эддингтоновского предела также может дать ответ на невероятную скорость откорма СЧД. Открытие галактики LID-568 в этом плане стало настоящей находкой.

Японские учёные усомнились в точности первого фото чёрной дыры и предложили свой вариант

Поскольку первое изображение чёрной дыры в центре Млечного Пути было сделано после обработки данных, полученных одновременно с восьми радиотелескопов, оно даёт несколько условное представление о реальном облике такого объекта. В зависимости от использованного алгоритма для обработки данных, чёрная дыра каждый раз будет выглядеть иначе, заявили японские учёные и представили собственный взгляд на чёрную дыру в центре нашей галактики.

 Источник изображения: EHT

Фотография чёрной дыры Стрельца А* (Sgr A*). Источник изображения: EHT

«Фотографии» чёрной дыры M87* (первой в истории) и чёрной дыры Стрельца А* (Sgr A*) в центре нашей родной галактики были сделаны так называемым Телескопом горизонта событий (Event Horizon Telescope, EHT). Это восемь разбросанных по всей Земле радиотелескопов, которые благодаря огромной базе могли получить данные в очень высоком разрешении. Затем все они направили собранную информацию, записанную на жёстких дисках, в центр обработки, где их свели воедино. С оптическими наблюдениями такого сделать нельзя, а с радиоданными в цифре — это решаемый вопрос.

После нескольких лет обработки учёные в мае 2022 года представили изображение чёрной дыры Стрельца А* в центре Млечного Пути. В целом её вид ближе к кругу. Саму чёрную дыру увидеть нельзя, фотоны не могут покинуть её за горизонтом событий, но диск аккреции, откуда вещество падает на чёрную дыру, благодаря трению и гравитации сияет во всех диапазонах наблюдений. Собственно, именно диск аккреции представлен на всех изображениях чёрных дыр.

Исследователи из Национальной астрономической обсерватории Японии (NAOJ) посчитали, что учёные коллаборации EHT допустили неточности при обработке данных. Использованный ими алгоритм ошибочно представляет отсутствующие данные. Для более точной интерпретации следовало выбрать другой метод обработки.

«Мы предполагаем, что изображение кольца было результатом ошибок во время анализа изображений EHT, и что часть его была артефактом, а не реальной астрономической структурой», — рассказали японские астрономы.

 Источник изображения: NAOJ

«Настоящее» изображение Стрельца А*. Источник изображения: NAOJ

Обработка данных с помощью альтернативного алгоритма представила чёрную дыру Стрельца А* вытянутым с востока на запад объектом. Восточная часть выглядит ярче, что учёные объяснили эффектом Доплера — диск аккреции летит нам навстречу. Сам диск наклонён по отношению к лучу зрения с Земли на 40–45 °, а скорость его вращения достигает 60 % от скорости света. Правильная интерпретация данных дала больше информации, чем получено после представления официальной фотографии.

В то же время необходимо признать, что сегодня можно лишь с осторожностью говорить о точности той или иной интерпретации данных, с помощью которых восстанавливают облик чёрных дыр. Помимо сложностей с их получением необходимо помнить, что пространство-время в значительной степени искривлено вблизи таких объектов, и что там можно понять — это большой вопрос.

Астрономы открыли первую в истории наблюдений тройную звёздную систему с чёрной дырой

Нашумевшая «Задача трёх тел» китайского писателя-фантаста Лю Цысиня наглядно показала, насколько неустойчивым и поэтому редким явлением во Вселенной может быть звёздная система из трёх объектов звёздной массы (звёзд или чёрной дыры). Тем удивительнее стало открытие такой системы, в центре которой впервые была обнаружена чёрная дыра.

 Художественное представление системы. Источник изображения: Jorge Lugo

Художественное представление системы V404 Лебедя (чёрная дыра разрывает ближайшую звезду и удерживает далёкую). Источник изображения: Jorge Lugo

Источником информации для открытия стали собранные европейским астрометрическим спутником «Гайя» (Gaia) данные. Этот аппарат создаёт динамический трёхмерный каталог звёзд в Млечном Пути и немного за его пределами. «Гайя» определяет вектор и скорость движения звёзд, что позволяет определить гравитационно-связанные объекты и выявить двойные и даже тройные системы.

Согласно данным измерений «Гайи», изначально считавшаяся двойной системой V404 Лебедя (Cygni) включает в себя третью звезду. Система удалена от Земли на 7800 световых лет. Недалеко от компактного центра в виде чёрной дыры звёздной массы и разрываемой ею близкой звезды с орбитальным периодом в 6,5 суток находится третья звезда, по-видимому, гравитационно связанная с системой. Нюанс в том, что эта звезда находится на удалении 3500 а.е. от чёрной дыры и делает полный оборот вокруг неё за 70 тыс. лет. Эта звезда была видна и раньше, но только измерения «Гайи» смогли показать её связь с двумя центральными объектами.

Собственно, в такой конфигурации пресловутая задача трёх тел решается положительным образом — такая система будет гравитационно устойчивой условно бесконечно долгое время. Суть открытия в другом — гравитационная привязка третьей далёкой звезды к центральной паре настолько слабая, что в данной ситуации кажется невозможной.

 Слева изображение центральной пары и далёкой звезды в оптике, справа — в инфракрасном диапазоне. Источник изображения: Nature 2024

Слева изображение центральной пары и далёкой звезды в оптике, справа — в инфракрасном диапазоне. Источник изображения: Nature 2024

Дело в том, что центральная чёрная дыра должна была образоваться в результате взрыва сверхновой, сбросить внешнюю оболочку и коллапсировать ядром. Все эти бурные проявления должны были бы разорвать слабую гравитационную связь с третьей звездой. Этого не произошло бы только в том случае, если бы коллапс произошёл без взрыва сверхновой. Такое явление теоретически возможно, но его сложно обнаружить и подтвердить наблюдениями (сверхновую будет видно в любом случае).

Моделирование ситуации с системой Лебедя V404 показало, что коллапс центральной звезды внутрь — это наиболее вероятный сценарий для описания того, что астрономы увидели в данных «Гайи» и последующих наблюдениях за системой. Сразу же возник вопрос — это так повезло, или тройные системы с чёрными дырами — это непременный или часто случающийся этап эволюции чёрных дыр? Ответ на него могут дать только последующие наблюдения.

Приливное разрушение звезды чёрной дырой впервые напрямую связали с квазипериодическими вспышками в рентгене

Учёные впервые наблюдали серию квазипериодических вспышек в мягком рентгеновском диапазоне от сверхмассивной чёрной дыры вскоре после обнаруженного там же события приливного разрушения звезды чёрной дырой. Ранее столь однозначной связи между этими двумя явлениями не было, что оставляло пространство для научных споров.

 Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

«Представьте себе пловца, который постоянно ныряет в бассейн и создаёт всплеск каждый раз, когда входит в воду, — пояснил суть проблемы Мэтт Николл (Matt Nicholl) из Королевского университета в Белфасте, Великобритания, ведущий автор исследования, опубликованного в текущем номере журнала Nature. — Звезда в этом сравнении похожа на ныряльщика, а диск [аккреции] — на бассейн, и каждый раз, когда звезда ударяется о поверхность, она создает огромный "всплеск" газа и рентгеновских лучей. Вращаясь вокруг чёрной дыры, звезда повторяет это снова и снова».

Разрушившее звезду приливное явление, известное как AT2019qiz, было впервые обнаружено в 2019 году широкоугольным оптическим телескопом Паломарской обсерватории. В 2023 году астрономы использовали рентгеновский телескоп «Чандра» и телескоп «Хаббл» для изучения последствий разрушения — следов упавшей на чёрную дыру материи в виде активности её аккреционного диска.

Данные «Чандры» были получены в ходе трёх наблюдений, каждое из которых продолжалось 4–5 часов. Общая экспозиция, составившая примерно 14 часов, показала слабый сигнал в начале и в конце наблюдений и очень сильный сигнал в середине цикла. Наблюдения с помощью приборов NICER, обсерватории Swift и индийского телескопа AstroSat позволили установить, что после разрушения звезды в приливном событии AT2019qiz из области чёрной дыры примерно каждые 48 часов исходили слабые вспышки в мягком рентгеновском диапазоне.

 Рентгеновские изображения AT2019qiz, полученные 9 и 10 декабря 2023 года. Источник изображения: Matt Nicholl / Nature 2024

Рентгеновские изображения AT2019qiz, полученные 9 и 10 декабря 2023 года. Источник изображения: Matt Nicholl / Nature 2024

Данные обсерватории «Хаббл» в ультрафиолетовом диапазоне помогли понять, насколько увеличился аккреционный диск чёрной дыры за счёт новой порции материи. Учёные предполагают, что диск аккреции увеличился настолько, что в него стал нырять компактный объект — звезда или чёрная дыра, которая вращается по орбите вокруг чёрной дыры, разорвавшей звезду. Помимо того, что учёные могут прояснить один из механизмов возникновения квазипериодических вспышек в рентгеновском диапазоне у чёрных дыр, проделанная работа может помочь получить более чёткое представление о размерах и динамике изменения аккреционного диска у конкретных чёрных дыр.


window-new
Soft
Hard
Тренды 🔥
Amazon представила ИИ-агента Nova Act, который заменит человека в интернет-серфинге 2 ч.
Слухи: четыре известные корейские компании устроили борьбу за право создавать новые игры по StarCraft 2 ч.
Голливудские студии перенаправили монетизацию фейковых трейлеров на YouTube себе в карман 3 ч.
Франция оштрафовала Apple на €150 млн за ограничение таргетинга в iOS 3 ч.
«Самое брутальное зрелище в галактике»: новый геймплейный трейлер подтвердил дату выхода безжалостного боевика Kiborg от российских разработчиков 4 ч.
«Вы объединяете мир»: в Death Stranding сыграло более 20 миллионов человек 4 ч.
«Яндекс» выпустил открытую ИИ-модель YandexGPT 5 Lite: её можно запускать на обычной рабочей станции 5 ч.
«Яндекс» выпустила ИИ-модель YandexGPT 5 Lite — она поможет ускорить IT-разработку и исследования 6 ч.
Split Fiction установила три мировых рекорда и попала в «Книгу рекордов Гиннесса» 6 ч.
Monster Hunter Wilds продолжает бить рекорды Capcom — продажи игры за месяц достигли 10 миллионов копий 8 ч.
На рынке комплектующих для игровых ПК появился новый крупный игрок — HP расширила ассортимент геймерского бренда Omen 2 ч.
Acer представила 240-Гц игровые QD-OLED-мониторы Predator X27U X1 и Predator X32 X2 по цене от $600 2 ч.
Meta подписала соглашение с Sembcorp о поставке энергии плавучих солнечных генераторов в Сингапуре 2 ч.
Возврат к корням: Vantage Towers разместила базовые станции на деревянных столбах 3 ч.
Arm собралась руками Nvidia захватить половину рынка процессоров для дата-центров 3 ч.
Между Apple и Илоном Маском разгорелся конфликт из-за мобильной спутниковой связи 3 ч.
Доступная раскладушка Samsung Galaxy Z Flip 7 FE будет выглядеть точно как прошлогодний Z Flip 6 5 ч.
На заводе «ЦТС» в Калининградской области начали выпускать серверные платы 5 ч.
Qualcomm представит 2 апреля новый процессор для бюджетных флагманов — преемника Snapdragon 8s Gen 3 6 ч.
Zeekr анонсировала зарядные станции с рекордной мощностью в 1,2 МВт, но подходящих электромобилей пока не существует 6 ч.