Опрос
|
реклама
Быстрый переход
Научная подработка: навигационные спутники могут стать детекторами чёрных дыр и тёмной материи
03.01.2024 [23:31],
Геннадий Детинич
Спутники систем навигации представляют собой сложнейшие приборы по координации синхронизированного с атомными часами времени и расстояний с учётом релятивистских явлений. Они способны и обязаны компенсировать любые гравитационные воздействия на их орбиты. Это уже готовые датчики гравитационных аномалий, сообщили европейские учёные и предложили превратить их в охотников за чёрными дырами и тёмной материей. «Мы впервые предложили использовать замеры гравиметрических научных приборов и параметры орбит спутников глобальных навигационных систем для поиска аномалий, порождённых скоплениями тёмной материи и примордиальными [первичными] чёрными дырами, которые сближаются с Землёй на достаточно близкое расстояние. Работа этого подхода уже была проверена на базе одного из спутников навигационной системы Galileo», — пишут исследователи, которых цитирует информагентство ТАСС. Первичные чёрные дыры слишком малы, чтобы их гравитационные волны могли уловить современные лазерно-интерферометрические гравитационно-волновые обсерватории. Считается, что они образовались из неоднородностей первичной материи вскоре после Большого взрыва. Многие из них уже испарились за счёт излучения Хокинга, но самые большие могут ещё оставаться во Вселенной. Это объекты планетарной массы, и в случае пересечения Солнечной системы в относительной близости Земли навигационные спутники отреагировали бы на их присутствие, как и на присутствие сгустков тёмной материи. Группа европейских физиков под руководством профессора Брюссельского свободного университета (Бельгия) Себастьяна Клессе разработала методику косвенного использования развёрнутых на орбите навигационных спутниковых группировок для поиска примордиальных чёрных дыр в окрестностях Земли, включая поиск скоплений тёмной материи. Очевидным образом прохождение небольшой чёрной дыры или сгустка тёмной материи рядом с Землёй окажет измеряемое воздействие на движение околоземных искусственных спутников, например, их ускорение и большую полуось орбиты. В сочетании с наземным оборудованием и спутниками по изучению земной гравитации это позволит примерно определить массу и положение гравитационных аномалий, если таковые произойдут, и сделать вывод о вероятной природе вызвавших их объектов. Согласно предварительным расчётам, один спутник навигационной системы Galileo сможет уловить такую гравитационную аномалию на удалении около 1,5 а.е. от Земли (от Земли до Солнца в среднем 1 а.е.). Но чем больше спутников будет задействовано, тем дальше будут отодвигаться границы чувствительности. Нечто подобное 10 лет назад проделали российские астрономы. Тогда они использовали данные орбитальных движений Солнца, планет и некоторых астероидов, чтобы попытаться обнаружить гравитационные аномалии в Солнечной системе. Наблюдение за навигационными спутниками в течение 30 лет способно на порядок улучшить определение подобных аномалий и принести весомый научный результат. Более того, если в окрестностях Земли будет обнаружена первичная чёрная дыра у учёных уже есть идея превратить её в аккумулятор энергии. Но это уже другая история. У чёрной дыры в центре нашей галактики нашли неизвестную, но регулярную активность
25.11.2023 [18:57],
Геннадий Детинич
Два мексиканских учёных на основании общедоступных данных от гамма-телескопа «Ферми» обнаружили активность возле сверхмассивной чёрной дыры в центре нашей галактики. Чёрная дыра Стрелец А* в центре Млечного Пути считается спокойной. Она не пожирает массы вещества вокруг себя, и поэтому множественных выбросов из её области нет. Однако кое-что от неё прилетает, и учёные отыскали вероятный источник загадочных вспышек. Несколько лет назад учёные обнаружили периодические вспышки в рентгеновском диапазоне, которые приходили к нам со стороны чёрной дыры Стрелец А*. Астрофизики Густаво Магальянес-Гихон (Gustavo Magallanes-Guijón) и Серхио Мендоса (Sergio Mendoza) из Национального автономного университета Мексики решили детальнее разобраться в этом вопросе и обратились к открытым данным орбитального гамма-телескопа Ферми. Учёные проанализировали 180 дней записей телескопа в период с 22 июня по 19 декабря 2022 года. О результатах анализа они сообщили в статье на сайте препринтов arХiv. Анализ заключался в обработке и поиске закономерностей, особенно тех, которые проявляются периодически. В результате они нашли одну из них. Оказалось, что из окрестностей Стрельца А* с достоверностью 3 сигма (для «железного» подтверждения открытия требуется достоверность не менее 5σ) каждые 76,32 мин приходит гамма-сигнал. С большой вероятностью вокруг чёрной дыры в центре Млечного Пути вращается сгусток газа на расстоянии примерно как Меркурий от Солнца со скоростью около 30 % от скорости света. Учёные считают, что облако газа будет излучать также в других диапазонах, и оно точно связано с ранее обнаруженными периодическими вспышками в рентгеновском диапазоне. Из самой чёрной дыры не вылетает никакое излучение, но в области поглощения вещества в диске аккреции процессы протекают очень и очень активно и сопровождаются выбросами энергии. Возможно в будущем Стрелец А* ещё зажжёт, но пока только подмигивает. Чёрная дыра в центре галактики M87 вращается, определили учёные после 22 лет наблюдений
01.10.2023 [15:07],
Геннадий Детинич
Сверхмассивная чёрная дыра в центре галактики M87 вращается, в чём учёные убедились после 22 лет наблюдений за этим объектом. Своим джетом она как фехтовальщик мечом описывает в пространстве окружность с размахом до 10 °. И этот «меч» длиною в 5 тыс. световых лет так же смертоносен для всего живого, что попадётся ему на пути, как и оружие в руках опытного бойца. Джет или струя вещества, бьющая из центра сверхмассивной чёрной дыры в галактике M87, был замечен в 1918 году астрономом Хебером Кёртисом (Heber Curtis). Изображение струи впервые получили с помощью орбитального телескопа «Хаббл». Более того, испускающая этот джет чёрная дыра стала первой, изображение которой удалось получить при непосредственном наблюдении за объектом. Точнее, телескоп «Горизонта событий» — сеть из разбросанных по всей Земле радиотелескопов — получил изображение тени этой чёрной дыры или её аккреционного диска, ведь сама дыра за свои пределы ничего не выпускает. «После успешной визуализации чёрной дыры в этой галактике с помощью телескопа Event Horizon Telescope вопрос о том, вращается эта черная дыра или нет, занимал центральное место в умах учёных, — рассказал астрофизик и соавтор исследования Кадзухиро Хада (Kazuhiro Hada) из Национальной астрономической обсерватории Японии. — Теперь ожидание переросло в уверенность. Эта чудовищная чёрная дыра действительно вращается». Для анализа поведения чёрной дыры M87 учёные проанализировали 170 наблюдений за ней в период с 2000 по 2022 год, проведённые более чем на 200 телескопах. О вращении этой чёрной дыры учёные могли судить только по смене положения её джета. Вращающаяся чёрная дыра искажает пространство-время вокруг себя — происходит так называемое увлечение инерциальных систем отсчёта. Тем самым направление джета и ориентация аккреционного диска изменяются вслед за искажениями пространства-времени. Для внешнего наблюдателя это выглядит как отклонение джета на какой-то угол. Наблюдения помогли определить угол отклонения струи, который составил примерно 10 °. Своё движение джет совершает за 11 лет, после чего цикл начинается снова. С какой скоростью вращается эта чёрная дыра, масса которой примерно в 6 млрд раз превышает массу Солнца, учёным ещё предстоит выяснить. Большинство чёрных дыр вращается с околосветовой скоростью, но уже обнаружены чёрные дыры, скорость вращения которых может падать до 50 % от скорости света. Сверхмассивная чёрная дыра поглотила звезду втрое больше Солнца и выплюнула остатки
23.08.2023 [16:43],
Павел Котов
Группа американских учёных, возможно, нашла доказательства, что сверхмассивная чёрная дыра в другой галактике поглотила достаточно крупную звезду с массой в три солнечных и выбросила её остатки в окружающее пространство. По этим остаткам как раз и удалось определить массу погибшей звезды. Событие, получившее название ASASSN-14li, наблюдалось в 2014 году, а произошло оно в центре галактики PGC 043234, расположенной на расстоянии 290 млн световых лет от Земли. Для подробного наблюдения за событием использовались рентгеновские обсерватории «Чандра» (Chandra) и XMM-Newton, данные с которых помогли изучить его более подробно. Анализ произведённых после поглощения звезды выбросов позволил учёным утверждать, что она когда-то имела массу, в три раза превышающую массу Солнца. Подобные инциденты называются событиями приливного разрушения. Когда подошедшая слишком близко звезда оказывается во власти гравитационного поля сверхмассивной чёрной дыры, её обломки нагреваются, и возникает вспышка, охватывающая оптический, ультрафиолетовый и рентгеновский диапазоны. Учёные измерили длины волн этого излучения и установили концентрации элементов в окружающем чёрную дыру аккреционном диске — по соотношению азота и углерода удалось оценить массу звезды. Полученные результаты не согласуются с опубликованной в 2017 году работой, посвящённой исследованию события ASASSN-14li — тогда учёные сделали вывод, что масса этой звезды составляла всего 0,6 солнечной. Были и другие исследования, авторы которых даже предполагали, что окружающее сверхмассивную чёрную дыру вещество вообще не имело отношения к какой-либо звезде, а возникло в результате серии извержений, порождённых самой чёрной дырой. Чёрные дыры могут разгоняться до 10 % от скорости света, рассчитали учёные
23.08.2023 [13:04],
Геннадий Детинич
Учёные почти в шесть раз повысили теоретический предел скорости, которую способны развивать чёрные дыры в процессе своей эволюции. Это тем более неприятно, что в Млечном Пути могут быть сотни блуждающих чёрных дыр, о которых нам ничего неизвестно. К счастью для нас, разогнаться до указанной отметки на уровне 10 % от скорости света чёрные дыры могут только в исключительных обстоятельствах. Учёные всё больше и больше узнают о поведении и эволюции чёрных дыр, хотя пробелы в этих знаниях продолжают оставаться. Это неудивительно. У нас нет инструментов и возможностей напрямую наблюдать такие объекты. Строго говоря, чёрные дыры — это всё ещё гипотеза, хотя и подкреплённая множеством теоретических доказательств и косвенных наблюдений. И наблюдения часто опережают теорию. Например, открыты чёрные дыры, масса которых выходит за границы теоретически обоснованной. Почему так может происходить, показали новые расчёты, которые подняли границы допустимых для чёрных дыр скоростей. Повышенную скорость и новую траекторию чёрные дыры могут получить при слиянии в двойной системе. Пара чёрных дыр сближается в своём орбитальном кружении вокруг общего центра масс до момента слияния, после чего новая чёрная дыра увеличенной массы приобретает некую дополнительную скорость и траекторию. До сих пор учёные считали, что после слияния чёрные дыры не могут двигаться со скоростью свыше 5 тыс. км/с относительно точки рождения. Новое более детальное моделирование показало, что при сочетании определённых условий скорость рождённой слиянием чёрной дыры может быть почти в шесть раз больше или 28 562 ± 342 км/с. Тем самым они подняли планку скорости чёрных дыр почти до 10 % от скорости света. Впрочем, как сказано выше, чтобы чёрная дыра разогналась до максимально возможного значения необходимо соблюдение двух условий: во-первых, спины (направления вращения) в паре чёрных дыр должны быть строго противоположны и, во-вторых, направлены вдоль плоскости орбиты. Только в таком случае образовавшаяся при слиянии новая чёрная дыра приобретёт импульс, который придаст ей наибольшее ускорение. Подобные скорости позволяют чёрным дырам носиться по галактикам и вылетать за их пределы. Такое поведение повышает вероятность столкновений между ними, чем может объясняться появление чёрных дыр с массой выше теоретически возможной (сценарий столкновений с путешественниками издалека просто не рассматривался). Очевидно, что такое происходит нечасто даже для бесконечной по нашим меркам Вселенной, но границы возможностей необходимо знать, чтобы овладеть теорией и перейти к практике. На сегодняшний день обнаружена одна ускоряющаяся чёрная дыра, которая, по мнению учёных, является результатом слияния двух других. Она движется со скоростью около 1542 км/с. Это не так быстро, как могло бы быть. И теперь мы знаем, насколько небыстро. На орбитах сверхмассивных чёрных дыр скрытно вращаются маленькие чёрные дыры, гласит новая теория
11.07.2023 [12:50],
Павел Котов
Учёные Оксфордского (Великобритания) и Колумбийского (США) университетов опубликовали работу, в которой описываются механизмы взаимодействия чёрных дыр звёздной массы с их «старшими собратьями» — сверхмассивными чёрными дырами в ядрах галактик. Находящиеся в ядрах большинства, если не всех, галактик сверхмассивные чёрные дыры могут вырасти до масс, в миллионы и миллиарды раз превышающих солнечную. Они зачастую окружены газопылевыми дисками, которые нагреваются до колоссальных температур и испускают яркое свечение. Часть этого вещества направляется непосредственно в чёрную дыру, а часть оказывается у её полюсов, из которых выбрасывается с околосветовыми скоростями, также производя мощное свечение. Такие объекты называются квазарами — они могут быть настолько яркими, что за ними не видно свечения остальных звёзд в галактиках, в которых они находятся. Авторы исследования утверждают, что наряду с квазарами в активных ядрах галактик могут находиться и относительно небольшие чёрные дыры массами от трёх до десяти солнечных, и они растут, сливаясь друг с другом. Квазары могут оказать влияние на столкновения небольших чёрных дыр, и эти процессы можно зафиксировать на Земле по гравитационным волнам — ряби в пространстве и времени, которую создают эти процессы. Данные были получены на основании серии сложных компьютерных симуляций, каждая из которых заняла три месяца. Моделирование воспроизводило механизмы взаимодействия сверхмассивных чёрных дыр и чёрных дыр звёздной массы. Симуляция показала, что чёрные дыры звёздной массы могут втягиваться в аккреционные диски своих сверхмассивных собратьев, где объединяются в двойные системы с себе подобными. Газ и пыль в этих дисках замедляют скорости движения небольших чёрных дыр — они не разлетаются, а оказываются гравитационно связанными друг с другом. При этом каждая образует собственный аккреционный диск, уменьшенную версию того, что окружает сверхмассивный объект. Слияния чёрных дыр звёздной массы также порождают сильные выбросы газа. Выяснилось также, что в половине таких систем небольшие чёрные дыры обращаются вокруг сверхмассивной в направлении, противоположном её собственному вращению — так называемое ретроградное движение. Авторы исследования указывают, что его результаты подтверждают возможность слияния чёрных дыр на орбитах сверхмассивных, а также объясняют «многие или, возможно, большинство сигналов гравитационных волн, которые мы сегодня наблюдаем». «Джеймс Уэбб» засёк зарождение космической паутины — это происходило через 830 млн лет после Большого взрыва
30.06.2023 [11:58],
Геннадий Детинич
Расположение и перемещение галактик во Вселенной отнюдь не случайно. Помимо явных скоплений галактики связаны нитеподобными структурами. По всей видимости, в основе «нитей» лежит тёмная материя, которая постепенно собирала вокруг себя обычное вещество. Вначале это была слабая космическая паутина, но со временем она становилась всё более прочной и заметной. «Джеймс Уэбб» смог проследить начало формирования призрачных нитей, связывающих галактики в огромные структуры. Центрами «сборки» космической паутины считаются сверхмассивные чёрные дыры или активные ядра галактик, которые также называют квазарами. Наблюдение за одним квазаром (J0305-3150) в ранней Вселенной в эпоху реионизации позволило выявить 10 связанных с ним галактик, соединённых космической «нитью» длиной 3 млн световых лет. «Я был удивлен тем, насколько длинной и узкой является эта нить, — сказал участник исследования Сяохуи Фань (Xiaohui Fan) из Университета Аризоны в Тусоне. — Я ожидал найти что-то, но не ожидал такой длинной, отчётливо тонкой структуры». Руководитель проекта Фейдж Ванг (Feige Wang) из того же университета добавил: «Это одна из самых ранних связанная с далёким квазаром нитевидных структур, которые люди когда-либо находили». Со временем эта нить превратится в громадное галактическое скопление, и оно где-то есть, а изучение космической паутины на ранних этапах даёт возможность проследить за эволюцией таких процессов. Проделанная учёными работа входит в рамки проекта по изучению самых первых чёрных дыр. Всего в рамках программы ASPIRE (A SPectroscopic survey of biased halos In the Reionization Era) будут наблюдаться 25 квазаров, существовавших в течение первого миллиарда лет после Большого взрыва. Программа призвана решить множество загадок, связанных с эволюцией чёрных дыр и одна из них — это слишком быстрое их появление в виде сверхмассивных объектов, на что, в теории, в те времена не хватило бы и времени, и материи. «Джеймс Уэбб» пробился сквозь сияние древних квазаров и увидел свет одних из первых звёзд Вселенной
29.06.2023 [09:46],
Геннадий Детинич
Группа астрономов сообщила о первом в мире наблюдении света звёзд из очень ранних активных галактик (квазаров). «Джеймс Уэбб» смог увидеть звёздное население в свете квазаров на удалении 12,9 и 12,8 миллиардов лет или во времена всего лишь через 870 и 880 млн лет после Большого взрыва. Так далеко и с такой разрешающей способностью земная наука ещё не заглядывала. Открытие поможет понять эволюцию звёзд, галактик и сверхмассивных чёрных дыр в их центрах. Космический телескоп «Хаббл» помог учёным увидеть звёзды в активных галактиках на расстоянии 10 млрд световых лет. «Уэбб» заглянул ещё дальше — почти на 13 млрд лет или в эпоху, когда первые звёзды образовывали первые галактики. До этого наука смогла составить представление об эволюции квазаров и их галактик-хозяек в зрелые годы Вселенной вплоть до нашего времени. Но что было в ранние эпохи развития Вселенной оставалось нам неизвестным. Следует сказать, что в исследованной нами Вселенной масса квазаров коррелирует с массой галактик, в которых они находятся (квазар — это активно питающаяся сверхмассивная чёрная дыра в центре галактики или, иначе, её активное ядро). Тем самым существует примерная зависимость массы квазаров от массы галактик. Учёные не могут со 100-процентной уверенностью ответить, почему так происходит. На этот счёт существует две основные гипотезы: либо излучение квазара влияет на активность звездообразования в галактиках-хозяйках, либо чёрные дыры растут пропорционально росту галактик в цепочке последовательных слияний более мелких галактик и чёрных дыр из их центров. Наблюдения «Уэбба» дают ценный материал для изучения эволюции галактик и квазаров на ранних этапах, что может подтвердить ту или иную гипотезу и для этого необходимо уметь отделять свет звёзд в галактиках от света квазаров в их центрах, который затмевает всё остальное излучение рядом с собой. Ведь узнать о массе далёкой галактики мы можем, только анализируя свет от её звёздного населения. «Уэбб» предоставил такую возможность для объектов на невообразимом удалении. Два квазара из ранней Вселенной — J2236+0032 и J2255+0251 — оказались с тем же соотношением масс чёрных дыр к массам их галактик, как и в нашей области Вселенной. Галактики, в центрах которых они обитали на тот момент времени, обладали массой в 130 млрд и 30 млрд раз больше солнечной, а массы их центральных чёрных дыр были в 1,4 млрд и 200 млн раз больше массы Солнца. Безусловно, двух наблюдений недостаточно для создания стройной теории, поэтому «Джеймс Уэбб» продолжит изучение квазаров в ранней Вселенной и такие программы уже намечены и выполняются. В центре нашей галактики обнаружены странные объекты — им дали название объектов G
24.06.2023 [11:02],
Геннадий Детинич
Три года назад в центре нашей галактики астрономы обнаружили четыре необычных объекта, которые выглядели как гигантские облака газа и пыли, но вели себя как звёзды. Первые два объекта с такими же свойствами были открыты там же около 20 лет назад. Вместе их стали называть «объектами G». Многолетний сбор данных позволил сделать обоснованное предположение о природе загадочных образований. В журнале Nature вышла статья, в которой астрономы объяснили вероятную природу объектов G. Первые два из них были открыты в начале нулевых годов и получили названия G1 и G2. Объекты G3, G4, G5 и G6 были обнаружены в 2020 году. Все они «обитают» в центре нашей галактики Млечный Путь и вращаются вокруг сверхмассивной звезды Стрелец А* (Sgr A*). Впрочем, орбиты первых двух объектов сильно отличаются от орбит четырёх других — они ближе к круговым, тогда как остальные объекты движутся по сильно вытянутым орбитам с периодом до 1600 лет, а минимальный орбитальный период объектов G при этом составляет 170 лет. За первые годы наблюдений сложилось впечатление, что объекты G — это гигантские облака из пыли и газа до 100 а.е. в поперечнике. Однако максимальное сближение объекта G2 с чёрной дырой в 2014 и последующий уход от неё показали, что «облако» повело себя как компактный объект. Если бы это был молекулярный газ (водород), чёрная дыра полностью поглотила бы его с соответствующим выбросом энергии после аккреции. Но этого не произошло. При сближении с чёрной дырой объект стал вытянутой формы, а после удаления вновь приобрёл прежний вид. По сумме полученных данных астрономы предположили, что объект G2 может быть продуктом слияния двух массивных звёзд в ранее двойной системе. Двойные звёзды могли врезаться друг в друга в процессе эволюции системы, а также под влиянием гравитации сверхмассивной чёрной дыры. Собственно обнаружение шести объектов с похожим поведением в окрестностях Стрельца А* как бы намекает о большой вероятности подобного развитии событий. Столкновение двух массивных звёзд теоретически способно создать одно ядро — звезду — окружённое колоссальным пузырём из газа и пыли. В центре галактики обычно массивное звёздное население и двойных звёздных систем там тоже довольно много, чтобы подобные столкновения случались довольно часто и, особенно, в присутствии сверхмассивной чёрной дыры, гравитация которой провоцировала бы такие события. Поэтому неудивительно, что астрономы обнаружили «деревья в лесу при наблюдении за лесом», правда, таких «деревьев» они раньше не видели, а может просто не замечали по незнанию. Возможно многие из наблюдаемых нами звёзд родились не в процессе обычной эволюции от зародыша протозвезды, а возникли в процессе гибели двойных звёздных систем после слияния звёздных пар. Первые шесть обнаруженных объектов G могут стать толчком к изменениям в теории эволюции звёзд и это важно, поскольку все наши базовые знания о Вселенной строятся на математических моделях и если они в чём-то неверны, то это скажется в области фундаментальной физики и, так или иначе, затронет многие области науки и техники. В далёком квазаре астрономы впервые увидели присутствие второй сверхмассивной чёрной дыры
07.06.2023 [11:34],
Геннадий Детинич
Астрономы давно подозревали, что наблюдаемый с 1888 года квазар OJ 287 в созвездии Рака — это галактика с двумя сверхмассивными чёрными дырами в своём центре. Но эта галактика так далеко от нас, а чёрные дыры расположены в такой близости друг к другу, что сигналы от них сливаются в одну точку. Последний цикл наблюдений за OJ 287 принёс долгожданное открытие — сигналы от второй чёрной дыры впервые были надёжно обнаружены. Активная галактика OJ 287 находится от нас на расстоянии около 5 млрд световых лет. Этот объект наблюдается астрономами 135 лет и изучен очень хорошо. Это отличная цель для проверки астрофизических теорий, которая даёт возможность на практике проверить те или иные модели. Наблюдения последних 40 лет позволили выявить два цикла в изменении активности галактики. Один из них 12-летний, а другой — 55-летний. Меньший цикл очевидным образом связали с орбитальным движением менее массивной чёрной дыры в центре галактики вокруг её намного большего партнёра по двойной системе. Наибольшая в этой паре чёрных дыр сверхмассивная чёрная дыра считается второй по массе среди обнаруженных СМЧД. Её масса составляет около 18 млрд масс Солнца. Моделирование показало, что меньшая чёрная дыра в паре имеет массу около 150 млн масс Солнца. На фоне намного более крупного партнёра её невозможно было надёжно детектировать и учёные лишь догадывались о её присутствии. Надёжным признаком обнаружения чёрной дыры может быть наличие активного аккреционного диска — обширной области газа и пыли, ближайшая к дыре часть которой раскалена до миллиардов градусов по Цельсию. Эта область светится почти во всех электромагнитных диапазонах, не говоря о периодическом появлении колоссальных выбросов энергии в виде джетов с полюсов чёрной дыры, которые также отлично фиксируются нашими приборами. Именно по таким признакам была детектирована наибольшая чёрная дыра из этой пары. Обнаружить активность менее массивной чёрной дыры из пары смогли польские астрономы во время наблюдений в цикле 2021/2022 годов. Они заметили короткоживущую яркую вспышку, длительность которой длилась меньше суток. Анализ архивных данных показал, что подобные явления могли быть зафиксированы и раньше, но их банально проспали. Моделирование показало, что короткоживущая вспышка — это не джет от второй СМЧД (там другая физика), а момент пересечения менее массивной СМЧД акреционного диска второй чёрной дыры. Она как бы ныряет в аккреционный диск своей соседки по системе и в этот момент происходит выброс энергии. Аналогичная вспышка фиксируется в процессе «выныривания» с другой стороны. Это как танец с саблями или лазерными мечами, если использовать сравнимые понятия, когда два партнёра кружат один вокруг другого в орбитальном танце и соударяются мечами-дисками. Бинарная система чёрных дыр в OJ 287 оказалась ещё интереснее, чем представляли учёные. Наблюдения за этим объектом будут продолжены. Можно ожидать, что учёные также попытаются проследить за ней с помощью гравитационных детекторов. Это даст ещё больше данных о физике процессов, которые мы никогда не сможем воспроизвести в земных лабораториях. В сердце нашей галактики обнаружены сотни загадочных структур
03.06.2023 [11:25],
Геннадий Детинич
Наша галактика, как и вся Вселенная, полна вещами, о которых мы пока даже не догадываемся. Эти вещи и явления вскрываются по мере совершенствования инструментов наблюдения за космосом, что наглядно показала работа нового радиотелескопа MeerKAT в ЮАР. 200-часовый цикл наблюдения обнаружил в центре нашей галактики тысячи нитеподобных структур, о которых учёные до этого даже не подозревали. Следует сказать, что первые нитеподобные структуры в центре Млечного Пути обнаружены более 40 лет назад. Астроном Фархад Юсеф-Заде (Farhad Yusef-Zadeh) из Северо-Западного университета в штате Иллинойс всю жизнь посвятил изучению этого явления. Первые обнаруженные нити были релятивистскими — это были разогнанные до околосветовой скорости потоки электронов. Нити длиной до 150 световых лет располагались параллельно друг другу и перпендикулярно плоскости нашей галактики, за что их прозвали «струнами арфы». Предполагается, что «струны» — это выстроенные по силовым линиям магнитного поля потоки частиц, хорошо видимые в радиодиапазоне и, скорее всего, они связаны с деятельностью сверхмассивной чёрной дыры в центре Млечного Пути (Стрелец А*, Sgr A*). Новое наблюдение с помощью радиотелескопа MeerKAT открыло нечто похожее и при этом иное — тысячи коротких нитей длиной от 5 до 10 световых лет, расположенных параллельно плоскости нашей галактики и расходящиеся радиально из её центра. Учёные потратили больше года на картирование этих объектов, с указанием точных длин и углов расхождения. Предполагается, что эти нити также являются результатом деятельности чёрной дыры Стрелец А*. Точнее, некоего события, происшедшего с дырой около 6 млн лет назад. Это могло быть одновременное падение множества вещества на чёрную дыру и, как следствие, резкий рост активности в аккреционном диске с выбросом энергии. «Было неожиданностью внезапно обнаружить новую популяцию структур, которые, кажется, указывают в направлении чёрной дыры, — сказал Юсеф-Заде. — Я был ошеломлён, когда увидел это. Нам пришлось проделать большую работу, чтобы установить, что мы не обманываем себя. И мы обнаружили, что эти нити не случайны, а, похоже, связаны с истечением нашей чёрной дыры. Изучая их, мы могли бы узнать больше о вращении чёрной дыры и ориентации аккреционного диска. Приятно, когда находишь порядок посреди хаотического поля ядра нашей галактики». Недалеко от нас обнаружено недостающее звено в эволюции чёрных дыр — невидимый объект промежуточной массы
24.05.2023 [10:24],
Геннадий Детинич
Благодаря телескопу «Хаббл» астрономы получили новые доказательства присутствия недалеко от Земли чёрной дыры промежуточной массы — редчайшего объекта во Вселенной, который уверенно ещё никогда не обнаруживал себя. Объект найден в шаровом звёздном скоплении всего в 6000 световых годах от нашей системы. По космическим меркам — это словно соседний двор. Забавно, что чёрные дыры промежуточной массы — это тайна в квадрате. Мы и сами чёрные дыры не можем увидеть — свет и электромагнитное излучение в целом не вылетают за их горизонты событий. Мы детектируем эти объекты по косвенным наблюдениям в виде тяготения к ним звёзд или по излучению перегретых дисков аккреции, а моделирование ставит в этом вопросе окончательную точку. Именно моделирование отсеивает чёрные дыры из череды невидимых карликов, нейтронных звёзд и прочего, что в силу ограниченной чувствительности могут не увидеть наши телескопы. И среди множества обнаруженных невидимых объектов — чёрных дыр — нет ни одной уверенно трактуемой, как чёрной дыры промежуточной массы. Есть маленькие чёрные дыры массой до 100 масс Солнца, массивные чёрные дыры с массой от сотен тысяч масс Солнца, а также сверхмассивные — от миллиона масс Солнца. Чёрных дыр в промежутке от 100 до 100 000 солнечных масс в природе не наблюдаются, а они должны быть! Впрочем, пару кандидатов в чёрные дыры промежуточной массы (среди сотни миллионов обнаруженных маленьких чёрных дыр только в нашей галактике) астрономы нашли. Это объекты 3XMM J215022.4-055108, который «Хаббл» помог открыть в 2020 году, и HLX-1, обнаруженный ещё в 2009 году. Оба они находятся в плотных звёздных скоплениях на окраинах других галактик. Каждый из этих кандидатов имеет массу до нескольких десятков тысяч солнечных масс. Также целый ряд чёрных дыр, вероятно, с промежуточной массой, был открыт рентгеновской обсерваторией NASA «Чандра», но к этим открытиям всё ещё множество вопросов. Наконец, астрономы воспользовались услугами «Хаббла», чтобы поохотиться на неуловимые чёрные дыры промежуточной массы в наших окрестностях. Как сказано выше, обнаруживаются они косвенно, например, по круговому движению звёзд в определённых регионах, где нет видимого центра. Такие вещи лучше наблюдать как можно ближе, чтобы наверняка исключить тусклые объекты и более точно рассчитать круговые траектории видимых объектов. «Хаббл» направили на ядро Мессье 4 (М4) — шарового звёздного скопления в 6000 световых годах от Земли. На видео показано, как звёзды движутся по кругу вокруг невидимого центра масс в течение 12 лет наблюдений (для этого использованы архивы телескопа). Моделирование показало, что это с чрезвычайно большой вероятностью может быть только чёрная дыра промежуточной массы, которая была оценена в 800 солнечных масс. «Хаббл» поставил точку в этой загадке и стал инструментом, который предоставил самые убедительные на сегодня доказательства существования чёрных дыр промежуточной массы. Поскольку чёрные дыры промежуточной массы в шаровых скоплениях были долго неуловимы, астрономы сделали оговорку: «Хотя мы не можем полностью утверждать, что это центральная точка гравитации [компактный объект], мы можем показать, что она очень мала. Она слишком мала, чтобы мы могли объяснить это иначе, чем одиночной чёрной дырой. Как вариант, может существовать звёздный механизм, о котором мы просто не знаем, по крайней мере, в рамках нынешней физики». Получены первые изображения самого яркого квазара молодой Вселенной
20.05.2023 [13:16],
Павел Котов
Группа учёных Исследовательского института астрофизики и планетологии (Франция) и Института внеземной физики общества Макса Планка (Германия) рассказала о наблюдениях за самым ярким квазаром молодой Вселенной SMSS J114447.77-430859.3 (допустимы также сокращённые варианты наименования SMSS J1144-4308 и J1144). Квазары — самые яркие объекты во Вселенной. Это сверхмассивные чёрные дыры, которые поглощают вещество и выбрасывают его в виде джетов, то есть плазменных струй, с околосветовой скоростью. Объект J1144 расположен на расстоянии около 9,4 млрд световых лет от Земли и наблюдается между созвездиями Центавр и Гидра. Наблюдение за квазаром производилось при помощи аппарата eROSITA на российско-европейской орбитальной обсерватории «Спектр-РГ», европейской обсерватории XMM-Newton, а также американских NuSTAR и Neil Gehrels Swift. Учёные выяснили, что температура объекта составляет около 350 млн K, то есть он более чем в 60 тыс. раз горячее поверхности Солнца. Масса чёрной дыры превышает солнечную примерно в 10 млрд раз, а масса ежегодно поглощаемого вещества в 100 раз больше солнечной. Рентгеновское излучение J1144 меняется в течение нескольких дней, что нетипично для объектов с такими большими чёрными дырами — для них эти периоды измеряются месяцами и даже годами. Наблюдения также показали, что одновременно с поглощением газа некоторая часть вещества выбрасывается в собственную галактику квазара в виде чрезвычайно мощных ветров. Доктор Элиас Каммун (Elias Kammoun), профессор Тулузского университета и глава исследовательской группы, назвал удивительным тот факт, что ни одна рентгеновская обсерватория прежде не занималась наблюдениями этого мощного источника. Квазары такого рода обычно находятся гораздо дальше, а этот отличается и высокой яркостью, и относительно небольшим расстоянием до Земли. Очередной этап исследований J1144 стартует уже в июне. В лаборатории плазмы создали модель чёрной дыры — физиков заинтересовал процесс её питания
20.05.2023 [08:16],
Геннадий Детинич
Чёрные дыры манят своей фантастической загадочностью — это колоссальные источники энергии и даже тоннели для межзвёздных перелётов. Такое необходимо изучать в подробностях и моделирование для этого — это правильный подход. Учёные из Имперского колледжа Лондона поставили эксперимент по моделированию аккреционных дисков чёрных дыр. Это поможет разобраться с питанием этих объектов и согласовать астрономические наблюдения с экспериментами. Во-первых, аккреционные диски вокруг чёрных дыр — это то, что позволяет нам видеть их нашими приборами. Четыре года назад благодаря этому феномену впервые было получено прямое изображение чёрной дыры в галактике Messier 87 (M87). Оранжевое кольцо на изображении — это раскрашенный компьютером диск из сверхразогретой плазмы вокруг чёрной дыры. Это относительно устойчивое образование. Вещество падает на чёрную дыру и испаряется в этом процессе — превращается в плазму. Электроны отрываются от атомов, и атомы становятся ионами. И всё это кружит с огромными скоростями вокруг чёрной дыры, пока не упадёт на неё. Упасть всему и сразу не даёт центробежная сила, которая выталкивает частицы вещества наружу. Эти процессы в целом сбалансированы и остаются более-менее стабильными миллионы и даже миллиарды лет. Но всё же вещество падает на чёрную дыру и она этим питается. Как это происходит в деталях, учёные не знают — теория и существующие модели процесса очень приблизительные. Поставленный эксперимент помог и ещё поможет разобраться в нюансах процесса питания чёрной дыры, что важно для понимания физики этих явлений. Опыт был поставлен на установке Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE). Этот прибор генерирует импульсы огромной силы тока — до 1,8 млн А. Ток такой силы ионизирует рабочее вещество — превращает его в плазму. Из минусов — импульсы тока очень короткие и не позволяют обеспечить длительные наблюдения. Возможностей установки хватило только на один полный оборот модели аккреционного диска, что очень мало для получения полной картины о динамике плазмы в диске. Но даже этого хватило, чтобы понять — модель работает и в целом отражает физику процессов плазмы в аккреционном диске настоящей чёрной дыры. Так, плазма ближе к центру вращалась быстрее, чем на периферии аккреционного диска — это соответствует астрономическим наблюдениям за чёрными дырами. Учёные рассчитывают, что смогут увеличить длительность импульса и дольше удерживать модель в работе, что поможет продвинуться ещё на шаг в изучении чёрных дыр, о чём они сообщили в статье в журнале Physical Review Letters. Учёные зафиксировали самую мощную космическую вспышку — она длится уже более трёх лет
12.05.2023 [11:20],
Павел Котов
Астрономы Саутгемптонского университета (Великобритания) сообщили об обнаружении самой мощной и продолжительной космической вспышки — она в десять раз ярче любой известной сверхновой и в три раза ярче вспышки приливного разрушения, которая возникает при падении звезды в чёрную дыру. Событие получило название AT2021lwx, и к настоящему моменту вспышка длится уже более трёх лет — для сравнения, яркие вспышки сверхновых видно лишь несколько месяцев. Событие произошло на расстоянии 8 млрд световых лет от Земли, то есть Вселенной тогда было 6 млрд лет. Исследователи считают, что взрыв порождён поглощаемым сверхмассивной чёрной дырой облаком газа в несколько тысяч раз больше Солнца. При погружении объекта в чёрную дыру через его остатки и её аккреционный диск проходят ударные волны. Такие события являются очень редкими, и ранее ничего подобного наблюдать не приходилось. В прошлом году учёные зафиксировали самый яркий взрыв за всю историю наблюдений — гамма-всплеск GRB 221009A. Он был ярче, чем AT2021lwx, но и значительно короче, а значит, при вспышке AT2021lwx высвобождается намного больше энергии. Впервые взрыв AT2021lwx был зафиксирован калифорнийским центром Zwicky Transient Facility, после чего подтверждён телескопами системы ATLAS (Asteroid Terrestrial-impact Last Alert System) на Гавайях. Истинные масштабы события долгое время оставались неизвестными. Учёных Саутгемптонского университета смутила его продолжительность: вспышки сверхновых и приливных разрушений длятся несколько месяцев, но никак не два года. Астрономы исследовали объект при помощи космической обсерватории Neil Gehrels Swift, New Technology Telescope в Чили, и Большого Канарского телескопа. Проанализировав спектр излучения, разбив его на разные длины волн и проанализировав различные характеристики излучения и поглощения, учёные смогли оценить расстояние до объекта и его яркость у источника. Он оказался сопоставим с квазарами — яркими вспышками, возникающими при постоянном поглощении сверхмассивными чёрными дырами газа, который падает на них с огромной скоростью. Но яркость квазаров колеблется постоянно, тогда как ещё десятилетие назад признаков AT2021lwx ещё не было — вспышка возникла внезапно, став одной из самых ярких во Вселенной, и это действительно беспрецедентно. Существует несколько гипотез, объясняющих природу взрыва, но наиболее правдоподобной учёные Саутгемптона считают чрезвычайно большое облако газа, преимущественно водорода, или пыли, которое сошло с орбиты вокруг чёрной дыры и устремилось в неё. Астрономы намереваются получить больше сведений об объекте, изучив его излучение в разных фрагментах спектра, включая рентгеновский диапазон — это поможет выявить поверхность объекта и его температуру, а также понять, какие основные процессы там происходят. А последующее моделирование поможет оценить, насколько жизнеспособны их гипотезы. |