Сегодня 26 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

Энергопотребление ИИ удалось снизить на 95 % без потерь, но Nvidia новый алгоритм вряд ли одобрит

В условиях растущей популярности искусственного интеллекта высокое энергопотребление ИИ-моделей становится всё более актуальной проблемой. Несмотря на то, что такие техногиганты, как Nvidia, Microsoft и OpenAI, пока не говорят об этой проблеме громко, явно преуменьшая её значение, специалисты из BitEnergy AI разработали технологию, способную значительно снизить энергопотребление без существенных потерь в качестве и скорости работы ИИ.

 Источник изображения: Copilot

Источник изображения: Copilot

Согласно исследованию, новый метод может сократить использование энергии вплоть до 95 %. Команда называет своё открытие «Умножением линейной сложности» (Linear-Complexity Multiplication) или сокращённо L-Mul. Как пишет TechSpot, этот вычислительный процесс основан на сложении целых чисел и требует значительно меньше энергии и операций по сравнению с умножением чисел с плавающей запятой, которое широко применяется в задачах, связанных с ИИ.

На сегодняшний день числа с плавающей запятой активно используются в ИИ для обработки очень больших или очень малых чисел. Они напоминают запись в бинарной форме, что позволяет алгоритмам точно выполнять сложные вычисления. Однако такая точность требует крайне больших ресурсов и уже вызывает определённые опасения, так как некоторым ИИ-моделям нужны огромные объёмы электроэнергии. Например, для работы ChatGPT требуется столько электроэнергии, сколько потребляют 18 000 домохозяйств в США — 564 МВт·ч ежедневно. По оценкам аналитиков из Кембриджского центра альтернативных финансов, к 2027 году ИИ-индустрия может потреблять от 85 до 134 ТВт·ч ежегодно.

Алгоритм L-Mul решает эту проблему за счёт замены сложных операций умножения с плавающей запятой на более простые сложения целых чисел. В ходе тестирования ИИ-модели сохранили точность, при этом энергопотребление для операций с тензорами сократилось на 95 %, а для скалярных операций на 80 %.

L-Mul также улучшает и производительность. Оказалось, что алгоритм превосходит текущие стандарты вычислений с 8-битной точностью, обеспечивая более высокую точность с меньшим количеством операций на уровне битов. В ходе тестов, охватывающих различные задачи ИИ, включая обработку естественного языка и машинное зрение, снижение производительности составило всего 0,07 %, что специалисты сочли незначительной потерей на фоне огромной экономии энергии.

При этом модели на основе трансформеров, такие как GPT, могут получить наибольшую выгоду от использования L-Mul, поскольку алгоритм легко интегрируется во все ключевые компоненты этих систем. А тесты на популярных моделях ИИ, таких как Llama и Mistral, показали даже улучшение точности в некоторых задачах.

Плохая новость заключается в том, что L-Mul требует специализированного оборудования и современные ускорители для ИИ не оптимизированы для использования этого метода. Хорошая новость заключается в том, что уже ведутся работы по созданию такого оборудования и программных интерфейсов (API).

Одной из возможных преград может стать сопротивление со стороны крупных производителей чипов вроде Nvidia, которые могут замедлить внедрение новой технологии. Так как, например, Nvidia является лидером в производстве оборудования для искусственного интеллекта и маловероятно, что она так просто уступит позиции более энергоэффективным решениям.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
«Не думаю, что Nintendo это стерпит, но я очень рад»: разработчик Star Fox 64 одобрил фанатский порт культовой игры на ПК 11 ч.
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 12 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 14 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 15 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 16 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 17 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 18 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 18 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 19 ч.
Мошенники придумали, как обманывать нечистых на руку пользователей YouTube 20 ч.
Во флагманских смартфонах Huawei Mate 70 нашли память SK hynix, которой там быть не должно 13 мин.
Чтобы решить проблемы с выпуском HBM, компания Samsung занялась перестройкой цепочек поставок материалов и оборудования 3 ч.
Новая статья: Обзор и тест материнской платы Colorful iGame Z790D5 Ultra V20 9 ч.
Новая статья: NGFW по-русски: знакомство с межсетевым экраном UserGate C150 10 ч.
Криптоиндустрия замерла в ожидании от Трампа выполнения предвыборных обещаний 11 ч.
Открыт метастабильный материал для будущих систем хранения данных — он меняет магнитные свойства под действием света 12 ч.
Новый год россияне встретят под «чёрной» Луной — эзотерика ни при чём 15 ч.
ASRock выпустит 14 моделей Socket AM5-материнских плат на чипсете AMD B850 16 ч.
Опубликованы снимки печатной платы Nvidia GeForce RTX 5090 с большим чипом GB202 17 ч.
От дна океана до космоса: проект НАТО HEIST занялся созданием резервного космического интернета 18 ч.