Сегодня 26 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Software

Генеративный ИИ не понимает устройство мира, показало исследование MIT

Генеративные ИИ-модели будоражат воображение руководителей многих компаний, обещая автоматизацию и замену миллионов рабочих мест. Однако учёные Массачусетского технологического института (MIT) предостерегают: ИИ хотя и даёт правдоподобные ответы, в действительности не обладает пониманием сложных систем и ограничивается предсказаниями. В задачах реального мира, будь то логические рассуждения, навигация, химия или игры, ИИ демонстрирует значительные ограничения.

 Источник изображения: HUNGQUACH679PNG / Pixabay

Источник изображения: HUNGQUACH679PNG / Pixabay

Современные большие языковые модели (LLM), такие как GPT-4, создают впечатление продуманного ответа на сложные запросы пользователей, хотя на самом деле они лишь точно предсказывают наиболее вероятные слова, которые следует поместить рядом с предыдущими в определённом контексте. Чтобы проверить, способны ли ИИ-модели действительно «понимать» реальный мир, учёные MIT разработали метрики, предназначенные для объективной проверки их интеллектуальных способностей.

Одной из задач эксперимента стала оценка способности ИИ к генерации пошаговых инструкций для навигации по улицам Нью-Йорка. Несмотря на то что генеративные ИИ в определённой степени демонстрируют «неявное» усвоение законов окружающего мира, это не является эквивалентом подлинного понимания. Для повышения точности оценки исследователи создали формализованные методы, позволяющие анализировать, насколько корректно ИИ воспринимает и интерпретирует реальные ситуации.

Основное внимание в исследовании MIT было уделено трансформерам — типу генеративных ИИ-моделей, используемых в таких популярных сервисах, как GPT-4. Трансформеры обучаются на обширных массивах текстовых данных, что позволяет им достигать высокой точности в подборе последовательностей слов и создавать правдоподобные тексты.

Чтобы глубже исследовать возможности таких систем, учёные использовали класс задач, известных как детерминированные конечные автоматы (Deterministic Finite Automaton, DFA), которые охватывают такие области, как логика, географическая навигация, химия и даже стратегии в играх. В рамках эксперимента исследователи выбрали две разные задачи — вождение автомобиля по улицам Нью-Йорка и игру в «Отелло», чтобы проверить способность ИИ правильно понимать лежащие в их основе правила.

Как отметил постдок Гарвардского университета Кейон Вафа (Keyon Vafa), ключевая цель эксперимента заключалась в проверке способности ИИ-моделей восстанавливать внутреннюю логику сложных систем: «Нам нужны были испытательные стенды, на которых мы точно знали бы, как выглядит модель мира. Теперь мы можем строго продумать, что значит восстановить эту модель мира».

Результаты тестирования показали, что трансформеры способны выдавать корректные маршруты и предлагать правильные ходы в игре «Отелло», когда условия задач точно определены. Однако при добавлении усложняющих факторов, таких как объездные пути в Нью-Йорке, ИИ-модели начали генерировать нелогичные варианты маршрутов, предлагая случайные эстакады, которых на самом деле не существовало.

Исследование MIT показало принципиальные ограничения генеративных ИИ-моделей, особенно в тех задачах, где требуется гибкость мышления и способность адаптироваться к реальным условиям. Хотя существующие ИИ-модели могут впечатлять своей способностью генерировать правдоподобные ответы, они остаются всего лишь инструментами предсказания, а не полноценными интеллектуальными системами.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
«Не думаю, что Nintendo это стерпит, но я очень рад»: разработчик Star Fox 64 одобрил фанатский порт культовой игры на ПК 8 ч.
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 9 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 12 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 13 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 13 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 14 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 15 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 16 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 17 ч.
Мошенники придумали, как обманывать нечистых на руку пользователей YouTube 17 ч.
Чтобы решить проблемы с выпуском HBM, компания Samsung занялась перестройкой цепочек поставок материалов и оборудования 3 мин.
Новая статья: Обзор и тест материнской платы Colorful iGame Z790D5 Ultra V20 6 ч.
Новая статья: NGFW по-русски: знакомство с межсетевым экраном UserGate C150 8 ч.
Криптоиндустрия замерла в ожидании от Трампа выполнения предвыборных обещаний 8 ч.
Открыт метастабильный материал для будущих систем хранения данных — он меняет магнитные свойства под действием света 10 ч.
Новый год россияне встретят под «чёрной» Луной — эзотерика ни при чём 13 ч.
ASRock выпустит 14 моделей Socket AM5-материнских плат на чипсете AMD B850 13 ч.
Опубликованы снимки печатной платы Nvidia GeForce RTX 5090 с большим чипом GB202 15 ч.
От дна океана до космоса: проект НАТО HEIST занялся созданием резервного космического интернета 15 ч.
OpenAI рассматривает возможность выпуска человекоподобных роботов 17 ч.