Сегодня 02 апреля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Видеокарты

ATI Physics. Часть вторая – тестируем своими руками

⇣ Содержание

Предисловие

В июне месяце, во время тайваньской компьютерной выставки Computex, компания ATI демонстрировала фирменную систему расчета физики, использующую в качестве «физического ускорителя» видеокарту Radeon X1900XTX. Тогда мы рассмотрели базовую концепцию технологии ATI Physics и теоретические предпосылки для использования видеокарт в качестве ускорителя физических расчетов.

Основные выводы, которые были получены в ходе первого знакомства с ATI Physics, заключается в том, что в настоящее время акцент делается на введение двух эффектов – обнаружение столкновений объектов и расчет поведения множества мелких (точечных) частиц. Что касается производительности «физических ускорителей», то нам приходилось верить цифрам, озвученным представителями ATI.

Разумеется, с той поры не проходило желание пощупать «физику» от ATI своими руками. И вот, эта возможность нам была предоставлена, благодаря российскому представительству ATI и компании Depo, чьи компьютеры после подписания эксклюзивного соглашения с ATI оснащаются видеоадаптерами исключительно этого производителя.

В этот раз мы сможем «вживую» увидеть, как работает ATI Physics и оценим масштабируемость производительности видеоадаптеров, используемых в качестве ускорителей физических расчетов.

Тестовый стенд

Мы получили на тестирование системный блок топовой конфигурации. Из наиболее важных для нас компонент отметим - процессор Intel Core Duo Extreme X6800 @ 2,93 ГГц, 2 Гб оперативной памяти стандарта DDR2, а также два видеоадаптера Radeon X1900XTX. Первый видеоадаптер используется в качестве «обычной» видеокарты, которая отвечает за рендеринг и вывод изображения, а второй Radeon используется в качестве ускорителя физических расчетов. На фото ниже - Компьютер DEPO с запущенной 3D-демо от ATI.

 system.jpg

На предоставленной нам системе использовалась сугубо технологическая версия видео-драйверов. По словам представителей ATI это даже не бета-версия, а «альфа». Поэтому, чтобы не вносить путаницу, мы не будем приводить номер версии драйверов, поскольку свежие драйверы ATI Catalyst наверняка получат более высокий порядковый номер версии, и у кого-нибудь может возникнуть ощущение, что они будут «включать в себя» и поддержку ATI Physics, а это не обязательно так.

Мы позволили себе некоторую вольность в обращении с предоставленной на тестирование системой, а именно – после проведения первой серии тестов заменили «физический ускоритель» Radeon X1900XTX на Radeon X1600XT. Система без проблем распознала видеокарту и установила ее в качестве «ускорителя физики».

Предварительные замечания

Тестируемая система была нам предоставлена в полностью сконфигурированном виде, с уже предустановленными демо-сценами. Отсюда следует ряд определенных ограничений. Во-первых, получаемые результаты и оценки справедливы только в рамках рассматриваемой нами системы и необязательно будут совпадать с тем, что мы увидим, когда ATI Physics официально выйдет в свет. Во-вторых, не ждите объективного сравнения с конкурирующими технологиями расчета «физики», таких сравнений не будет, поскольку пока не существует тестовых приложений для демонстрации физических расчетов, способных запускаться на разных платформах.

Физические модели, положенные в основу каждого из рассматриваемых ниже тестов, нам неизвестны. То есть, мы не можем однозначно сказать, какими «физическими» параметрами наделены объекты, какие именно из физических законов учитываются при моделировании движения тел и частиц, а также с какой степенью приближения выполняются данные расчеты.

Для того, чтобы вы имели представление о сложности расчета «физики», приведем несколько примеров. Объекты реального мира имеют определенную массу, плотность, упругость, сложную форму. Из физических законов можно привести - закон всемирного тяготения, законы сохранения энергии и импульса. Объекты сложной формы и обладающие массой, имеют центр масс (или центр тяжести), который может не совпадать с геометрическим центром объекта. А это приходится учитывать, поскольку даже при прямолинейном движении центра масс объекта (центра тяжести), объект может вращаться. Другая сложность расчета поведения объектов сложной формы состоит в том, что при соударении необходимо знать «границу» объекта. В простейшем случае расчет соударений проводится для графических примитивов типа сферы или параллелепипеда, в который включен объект. Попытка привести в соответствие графический вид и физическую форму объекта приводит к возрастанию сложности модели объекта. Как видите, попытка смоделировать «реальное» поведение объекта в физическом мире кардинально отличается от задачи «движение бесконечно малой невесомой точки в вакууме». Теоретически, зная все параметры всех объектов и их начальные скорости/ускорения, можно рассчитать положение, скорости и ускорения всех объектов в любой момент времени. Но для этого потребуется решить систему дифференциальных уравнений, количество которых пропорционально числу объектов. Для выполнения подобной задачи требуется неимоверное количество вычислительных ресурсов. Поэтому обычно прибегают к тем или иным упрощениям.

Очевидно, что возрастание сложности модели позволит получить очень реалистичную картинку, но потребует больших вычислительных ресурсов. Нахождение разумного компромисса между реалистичностью и производительностью – задача сама по себе довольно нетривиальная. Следует также учитывать, что увеличение количества объектов в сцене накладывает дополнительную нагрузку на основной видеоадаптер, который занимается финальным рендерингом, даже если расчетом «физики» занимается специализированный вычислитель.

Мы не будем гадать, какие именно упрощения были использованы в той или иной демо-сцене, использованной в тестах. Скажем лишь, что по нашим наблюдениям, все использованные объекты имеют массу, абсолютно гладкие (отсутствует сила трения) и твердые (то есть не деформируются). Это имеет значение при расчете движения объектов после соударения. Объекты находятся в поле тяготения, то есть, запущенные под углом к горизонту - движутся по параболе. Границы объектов, по которым производится расчет столкновений, довольно близко совпадают с видимой формой объекта.

Как видите, инженеры ATI не ставили перед собой легких задач. Давайте посмотрим, что же получилось в итоге.

Из десятка имеющихся тестов мы выбрали 3 синтетических теста и 2 «игровых». Такой выбор обусловлен тем, что синтетические тесты показывают стабильные средние результаты от запуска к запуску. Это позволяет провести количественные оценки полученных результатов с относительно малой погрешностью и сравнить результаты для двух видеоадаптеров, играющих роль «физического ускорителя». Тесты, эмулирующие игровое окружение, позволяют получить представление о новшествах, которые возможно появятся в будущих играх с поддержкой «физики».

Все тесты проводились в разрешении 1280x1024 точек, полноэкранное сглаживание и анизотропная фильтрация отключались (NO AA/AF).

Следующая страница →
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

window-new
Soft
Hard
Тренды 🔥
Картинки в стиле Ghibli перегрузили серверы OpenAI — выпуск новых функций замедлен 6 ч.
У Ubisoft пока нет чёткого плана работы новой компании с Tencent — инвесторы и сотрудники нервничают 8 ч.
«Загрузки быстрее, чем в Doom (2016)»: эксперт Digital Foundry остался в восторге от Doom: The Dark Ages 9 ч.
Консоли задержат релиз постапокалиптического стелс-экшена Steel Seed от создателей Close to the Sun — объявлена новая дата выхода 10 ч.
ИИ-модель Llama запустили на ПК из прошлого тысячелетия на базе Windows 98 11 ч.
Telegram продал виртуальных первоапрельских кирпичей почти на 100 млн рублей 11 ч.
Nintendo подтвердила рекордную продолжительность презентации Switch 2 и устроит две демонстрации игр для консоли 12 ч.
ChatGPT остаётся самым популярным чат-ботом с ИИ, но у конкурентов аудитория тоже растёт 13 ч.
Google сделает сквозное шифрование в Gmail доступным для всех 13 ч.
Антиутопия на колёсах: новый геймплейный трейлер раскрыл дату выхода приключения Beholder: Conductor про кондуктора легендарного поезда 13 ч.