Сегодня 25 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → гиперзвук
Быстрый переход

Китай испытал прямоточный воздушно-реактивный двигатель с детонацией для самолётов вдвое быстрее Ту-144 и «Конкорда»

Китайская компания Space Transportation опубликовала видео первого лётного испытания прямоточного воздушно-реактивного двигателя с детонацией. Он предназначен для самолётов, которые будут летать со скоростью около 4 Махов, что в два раза быстрее сверхзвуковых Ту-144 и «Конкордов». Двигатель был испытан в составе ракеты. Первые лётные испытания на самолёте запланированы на 2027 год.

 Источник изображения: Space Transportation

Двигатель JinDou400. Источник изображения: Space Transportation

Двигатель JinDou400 (Jindouyun) длиной 3 м и диаметром 30 см обеспечил тягу 400 кг и разогнался до скорости 5000 км/ч на высоте более 20 км. Испытания прототипа двигателя состоялись в конце октября. Окончательная конструкция двигателя была испытана в полёте 9 декабря.

В процессе работы двигателя возникает серия взрывов в камере сгорания, которые создают фронт ударной волны. Это обеспечивает увеличенную тягу при сохранении расхода топлива. Воздух для сжатия топлива и последующей детонации поступает прямо в двигатель в процессе движения, что устраняет необходимость в компрессорах и турбинных компонентах. Это упрощает конструкцию, улучшает соотношение тяги к весу и снижает затраты.

 Рендер будущего самолёта

Рендер будущего самолёта

Первый полноценный пассажирский маршрут на гиперзвуковом самолёте с представленными двигателями компания Space Transportation обещает открыть в 2030 году. Маршрут будет прямым: самолёт, например, сможет преодолеть расстояние между Пекином и Нью-Йорком за 2 часа. Сейчас на это уходит 15,5 часов в случае рейса без пересадок.

Испытания подтвердили надёжность и управляемость прямоточного детонационного реактивного двигателя. Двигатель выполнен модульным и частично изготовлен с помощью 3D-печати. Простая конструкция, немногочисленные компоненты и отсутствие механических узлов делают изделие высоконадёжным и относительно недорогим. Помимо полётов между различными точками мира, будущий гиперзвуковой самолёт сможет доставлять туристов в космос на суборбитальные высоты по цене, на порядок ниже текущей.

Китай впервые показал испытания гиперзвукового беспилотника на видео — он разогнался до 7 Маха и удачно приземлился

Институт механики (IMECH) при Китайской академии наук (CAS) впервые обнародовал кадры испытаний прототипа гиперзвукового беспилотника. Это воздушное судно самолётного типа. В теории оно ориентировано на полёты выше обычных самолётов, но ниже спутников. Такие гиперзвуковые самолёты могут обеспечить экспресс доставку груза и использоваться для научных целей.

 Источник изображения: SCMP

Источник изображения: SCMP

Впервые макет беспилотника серии MD был показан два года назад на авиационном салоне в Чжухае. В финальном исполнении аппарат обеспечит дальность полёта до 8000 км с транспортировкой до 600 кг полезной нагрузки. Над его проектированием группа инженеров IMECH начала работать в 2018 году. Первые успешные испытания прототипа состоялись в ноябре 2021 года.

Испытания проводились с воздушным стартом. Беспилотник поднимался в стратосферу на воздушном шаре, после чего сбрасывался. После набора скорости в процессе пикирования беспилотник запускал двигатели и переходил на горизонтальный полёт. Утверждается, что он развивал скорость 7 Махов. Затем самолёт садился на взлётно-посадочную полосу, где подготавливался к очередному испытательному полёту.

Похожим образом проходят испытания прототипов гиперзвуковых беспилотников Talon-A в США, которые сбрасываются из-под крыла гигантского самолёта «Рух» компании Stratolaunch. В этом году они впервые запускали двигатели в полёте. Очевидно, проблема в двигателях, которые пока далеки от возможности обеспечить полёт на всех этапах. Впрочем, китайцы говорят о способности их прототипа двигаться на сверхзвуке и маневрировать при посадке на более низких скоростях. Но подробностей пока нет.

Британский разработчик космолётов и двигателей для гиперзвуковых самолётов Reaction Engines обанкротился

Созданная ещё в 1989 году британская компания Reaction Engines по разработке передовых аэрокосмических двигателей признана банкротом. Это был ключевой игрок правительственной программы Великобритании по созданию гиперзвуковых двигателей военного и гражданского назначения. Ведущими инвесторами компании были BAE Systems и Rolls-Royce, которые отказали ей в дальнейшем финансировании.

 Источник изображения: Reaction Engines

Источник изображения: Reaction Engines

На период решения вопросов с кредиторами компания Reaction Engines перешла под внешнее управление, которое осуществляет крупнейшая международная консалтинговая компания PricewaterhouseCoopers (PwC). Из 208 сотрудников Reaction Engines уволены 173 человека.

«С большой печалью сообщаем, что компания-первопроходец с 35-летней историей внедрения аэрокосмических инноваций, к сожалению, не смогла привлечь финансирование, необходимое для продолжения деятельности, — сказано в пресс-релизе PwC. — Мы знаем, что это очень неопределенное и тревожное время для талантливых и преданных делу сотрудников компании. Мы полны решимости оказывать им всю необходимую поддержку в это время».

Компания Reaction Engines была создана 35 лет назад британским инженером Аланом Бондом (Alan Bond). До этого он отметился участием в проекте Британского межпланетного общества «Дедал». Это проект по созданию беспилотного звездолёта — первый достаточно детальный инженерный подход к проектированию межзвёздных космических кораблей.

Позже Reaction Engines приступила к разработке проекта по созданию одноступенчатого орбитального космоплана HOTOL (горизонтальные взлёт/посадка). Создаваемые для проекта прямоточные реактивные двигатели компания проектировала с учётом собственных интересов — она создавала собственный космоплан Skylon. Участие в проекте HOTOL для компаний British Aerospace и Rolls-Royce дало возможность Reaction Engines принять участие в ряде военных проектов США и Великобритании и надолго обеспечило ей финансовую стабильность. В частности, компания обещала создать двигатель SABRE (Synergetic Air Breathing Rocket Engine), на который многие возлагали надежды.

В 2015 году British Aerospace приобрела 20 % акций Reaction Engines и обеспечила ей приток капитала от Rolls-Royce и других инвесторов. До последнего времени Reaction Engines была основой британской правительственной программы создания гиперзвукового оружия. Признание компании банкротом поставило под угрозу это направление. Точку поставили компании British Aerospace и Rolls-Royce, отказавшись предоставить Reaction Engines очередные примерно $200 млн на развитие.

Американский стартап успешно испытал гиперзвуковой ракетный двигатель на керосине и перекиси водорода

Молодая американская компания Ursa Major (лат. — Большая Медведица) провела серию испытаний нового ракетного двигателя, пригодного для сверхзвуковых полётов. Двигатель Draper запускался свыше 50 раз, доказав способность работать и регулировать тягу. Топливом для него служит керосин и перекись водорода. Эти жидкости хранятся в обычных условиях и способны заменить твёрдое топливо с одновременным наращиванием эффективности.

 Источник изображений: Ursa Major

Испытание силовой установки «Дрейпер». Источник изображений: Ursa Major

Двигатель «Дрейпер» — это развитие силовой установки «Хадли» (Hadley) этой же компании, уже проходящей испытание на прототипе гиперзвукового планера ТА-1 другой компании — Stratolaunch. Согласно предыдущей информации, двигатель «Хадли» развивает тягу 2,2 тс на уровне моря. «Дрейпер» чуть слабее — его тяга составляет 1,8 т на уровне моря. Он может найти применение как в космических аппаратах, так и в противоспутниковых оборонных системах. Собственно, «Дрейпер» создаётся по контракту с ВВС США в виде договора с исследовательским подразделением AFRL ведомства.

«Мы рады тому, как быстро продвигается программа разработки, и с нетерпением ожидаем запуска двигателя для гиперзвуковых и космических применений в ближайшие годы», — сказал Брэд Аппель (Brad Appel), технический директор Ursa Major, комментируя факт заключение контракта на разработку всего год назад.

 Рендер двигателя Arroway

Рендер двигателя Arroway

Компания Ursa Major разрабатывает целый спектр двигателей от маломощных Draper до средних Ripley («Рипли») тягой 22,7 тс и даже создаваемые для замены российских РД-180/181 двигатели Arroway с тягой 90 тс. Компания использует передовые наработки и экологически чистое топливо типа метана, керосина и перекиси водорода. По крайней мере, на стендах всё это показывает себя очень и очень неплохо.

Китай испытал рельсотрон для запуска снарядов в стратосферу, но что-то пошло не так

В китайском научном рецензируемом журнале Transactions of China Electrotechnical Society вышла статья, в которой авторы рассказали о проблематике использования рельсовых пушек для запуска гиперзвуковых управляемых снарядов. Выявить полноту проблемы помогли полевые испытания орудия во время запуска снаряда в стратосферу. Они закончились неудачно, но указали путь к решению задачи.

 Предполагаетмый прототип рельсовой пушки на корабле НОАК. Источник изображения: SCMP

Предполагаемый прототип рельсовой пушки на корабле НОАК. Источник изображения: SCMP

«Снаряд не следовал ожидаемой траектории, а максимальная дальность и высота полёта не соответствовали расчётным значениям», — сказано в рецензированной статье команды Военно-морского инженерного университета во главе с Лу Цзюньеном (Lu Junyong).

До выстрела учёные провели множество расчётов, экспериментов и цифровое моделирование процесса. Также снаряд прошёл испытания в аэродинамической трубе, где имитировался полёт на гиперзвуковой скорости. Всё было понятно, но после выстрела снаряд с оперением разогнался до скорости свыше 5 Маха примерно за 5 секунд и достиг потолка 15 км, в процессе чего сошёл с заданной траектории, а после начал снижение и упал на землю через 3 мин после выстрела.

Как показали данные с датчиков снаряда, его скорость вращения оказалась выше необходимой и, к тому же, случайным образом менялась в процессе полёта. Вращение снаряда необходимо для стабилизации его полёта, что в нарезном оружии реализуется пропилом спиральных бороздок в стволе. С гиперзвуковыми снарядами всё намного сложнее. Скорость их вращения должна быстро снижаться по мере наращивания скорости полёта и всё время оставаться стабильной, иначе малейший крен вызывает резкое изменение траектории, что и произошло во время стрельб.

В теории такого не должно было случиться. Для выяснения причины неудачи были собраны все экспериментальные данные, которые затем пропустили через систему машинного обучения. Искусственный интеллект выяснил, что причиной нерегулярной и случайной смены скорости вращения гиперзвукового снаряда стали микродеформации на оперении снаряда, которые возникали во время нахождения снаряда в стволе.

В рельсотроне, где токопроводящий снаряд разгоняется, скользя между двух контактных рельсов или с помощью тележки, за доли секунд возникают запредельные давление и температура вдобавок к электрическим дугам на выходе из орудия. Тем самым создаются условия для появления незаметных невооружённому глазу деформаций на кромках крыльев управляемого снаряда, что меняет аэродинамику на гиперзвуковых скоростях. Тот же ИИ подсказал, каким образом можно стабилизировать полёт снаряда с помощью работы закрылками, чтобы компенсировать нестабильности во время выстрела.

В США несколько лет назад официально свернули работы, связанные с разработкой рельсотронного оружия. Китай продолжает создавать рельсотроны, намереваясь получить опыт не только для боевого применения этого оружия, но также для совершенствования левитирующих поездов и создания электромагнитных катапульт для запуска космопланов и, в целом, полезной нагрузки на орбиту.

США совершат рывок в области гиперзвуковых двигателей благодаря 3D-печати

США беспокоит факт отставания от России и Китая в области гиперзвуковых двигателей. Сократить разрыв и выйти вперёд должны помочь аддитивные технологии — 3D-печать металлами и сплавами, которая сократит время на проектирование, прототипирование, испытание и производство. Для этого Пентагон заключил контракт с компаний Aerojet Rocketdyne на сумму $22 млн. Aerojet должна изготовить прототип гиперзвукового двигателя и предоставить технологию массового производства.

 Художественное представление гиперзвуковой ракеты с прямоточным двигателем. Источник изображения: Aerojet Rocketdyne

Художественное представление гиперзвуковой ракеты с прямоточным реактивным двигателем. Источник изображения: Aerojet Rocketdyne

Компания Aerojet Rocketdyne давно использует аддитивные технологии при производстве ряда ракетных и реактивных двигателей, включая AR1, RL10, RS-25, Bantam, а также для производства спутников MPS-120 CubeSat и компонентов двигательной установки пилотируемого «лунного» корабля NASA Orion и для других целей. В сфере аддитивного производства Aerojet сотрудничала с другими исследовательскими организациями Пентагона — AFRL, DARPA и, наконец, с NASA. Поэтому неудивительно, что Aerojet пригласили в программу GAMMA-H по разработке техпроцесса производства прямоточного гиперзвукового двигателя методами развитой 3D-печати.

«Aerojet Rocketdyne объединит несколько важных этапов комплексного процесса производства прямоточных реактивных двигателей в рамках контракта GAMMA-H, который обеспечит [производственный] график и экономичность, связанные с уменьшением фрагментарности цепочки поставок, — заявил президент Aerojet Rocketdyne Росс Нибергалл (Ross Niebergall). — Оптимизация процессов позволит увеличить выход деталей и сократить количество этапов обработки, что приведет к увеличению скорости производства и снижению затрат».

Самой последней неудачей для США стало провальное испытание гиперзвуковой ракеты ARRW, проведенное 13 марта 2024 года. Россия и Китай активно развивают гиперзвуковое оружие и используют его на практике, тогда как в арсенале США нет ни одной гиперзвуковой ракеты. Реализация программы GAMMA-H даёт надежду наверстать упущенное.

Китайские учёные разработают рельсотронную катапульту для запуска гиперзвуковых космопланов

Китайские учёные добились определённых успехов в разработке теорий, материалов, технологий и процессов, которые обещают кардинально изменить аэрокосмическую область и не только. Речь идёт о гиперзвуковом транспорте, который на начальном этапе может использовать электромагнитное ускорение. Технология также может найти воплощение в «гиперлупе» — гиперзвуковых поездах в вакуумных тоннелях.

 Источник изображения: Weibo

Источник изображения: Weibo

В настоящее время в Китае есть ряд экспериментальных решений, создающих основу для моделирования и опытов. Как сообщается в недавно опубликованной статье в рецензируемом журнале Acta Aeronautica, процессы разгона и отделения воздушного судна от рельсотронной катапульты были исследованы в аэродинамической трубе и подвергнуты анализу на компьютере. Разработчики проекта подчёркивают, что им неизвестно о проведении подобных работ в США или в других странах. Между тем, анализ процессов в момент отделения самолёта от гиперзвуковой катапульты является одним из самых важных в процессе запуска.

На авианосцах ВМФ США для запуска самолётов используются паровые катапульты. При попытке перейти на электромагнитные катапульты инженеры столкнулись с трудностями. В частности, электромагнитные катапульты получили авианосцы типа «Джеральд Р. Форд». Сообщается, что у них достаточно большая частота отказов. Ещё раньше NASA отказалось от проекта разработки электромагнитной катапульты для замены первой ступени ракет. Тогда считалось, что для этого необходимо разогнать вторую ступень до скорости 700 км/ч. После работы над аналогичным проектом в Китае учёные пришли к выводу, что для отказа от первой ступени космолёт придётся разгонять до более высокой скорости.

В 2016 году в Китае начали разрабатывать проект «Тэнъюнь» — это многоразовая аэрокосмическая платформа с гиперзвуковым разгонщиком и космолётом. Как вариант рассматривается возможность разгона 50-тонного космолёта на гигантской электромагнитной стартовой трассе, которая придаст судну скорость до 1,6 Маха (1960 км/ч). После отделения от катапульты космоплан запускает свои двигатели и разгоняется до скорости, семикратно превышающей скорость звука. Тем самым будет достигаться колоссальная экономия на топливе.

Момент отделения 50-т машины размерами больше лайнера Boeing 737 будет критическим для системы и именно ему посвящены многочисленные эксперименты в аэродинамической трубе. Как выяснили учёные, при преодолении космопланом звукового барьера на катапульте между самолётом и землёй запускается каскад ударных волн. Нижняя часть аппарата начинает испытывать многочисленные ударные нагрузки из-за отражений ударных волн от близкой поверхности земли. Эти же ударные волны нарушают воздушный поток, создавая очаги воздушного потока дозвуковой скорости между аппаратом, электромагнитными салазками и треком.

Когда салазки достигают заданной скорости, они резко останавливаются, и происходит отделение космоплана. Хаотичный поток воздуха сначала поддерживает аппарат, но через четыре секунды, как показало испытание в аэродинамической трубе, поток срывается в нисходящую тягу. Для гипотетических пассажиров судна и экипажа в этот момент возникла бы кратковременная невесомость. Но по мере увеличения расстояния между самолетом и взлётной полосой интенсивность воздушного потока уменьшается, пока полностью не исчезнет. К этому моменту двигатели самолёта должны достичь необходимой тяги и создать ему условия для набора высоты.

Моделирование показало, что конструкция космоплана требует усиления в местах наиболее сильно подверженных аэродинамическим ударам. Но в целом, этот подход признан безопасным и осуществимым, как написали учёные в своей статье. Очевидно, что предложенный подход будут проверять на практике. Для этого уже построены две экспериментальные трассы. Трассы, что показательно, построены не только и не столько для аэрокосмического проекта, а для разработки поездов на магнитной подушке. Одна из них — 2-км вакуумная труба в промышленном центре Датун, провинция Шаньси, построенная Китайской корпорацией аэрокосмической науки и промышленности (CASIC), позволит разгонять маглевы в трубе с низким вакуумом до 100 км/ч. В перспективе длина трубы достигнет 60 км, по которой можно будет разгонять поезд до 5000 км/ч. На трассе будут проверяться возможности электромагнитного разгона, управления и всего прочего, что также найдёт применение в катапультах для космических запусков.

Аналогичную площадку также создали в Цзинане, столице восточной провинции Шаньдун, там проводятся похожие эксперименты со сверхскоростными электромагнитными санями под наблюдением Академии наук Китая (CAS). Наконец, в Китае также создаются обычные боевые рельсотроны, если слово «обычные» применимо к подобным проектам.

Всё вместе означает, что Китай понемногу развивает материально-техническую базу, которая в перспективе может произвести революцию в сфере запусков в космос. Если рельсовый ускоритель и гиперзвуковой космоплан станут реальностью, то цена доставки каждого килограмма полезной нагрузки на орбиту будет существенно дешевле $100 (до $60 и даже меньше).

Stratolaunch впервые запустила прототип гиперзвукового планера Talon-A с двигателем

Компания Stratolaunch сообщила об успешном запуске TA-1, прототипа гиперзвукового планера Talon-A, оснащённого ракетным двигателем. Прежде запускался только прототип без двигателя, который просто планировал. Запуск TA-1 был выполнен с гигантского самолёта Roc (Stratolaunch Model 351).

 Источник изображений: Stratolaunch

Источник изображений: Stratolaunch

Сообщается, что самолёт Roc взлетел из аэрокосмического порта Мохаве 9 марта в 10:17 по восточному времени (17:17 мск), направившись на запад над Тихим океаном у побережья центральной Калифорнии, где в неустановленное время запустил ТА-1. Спустя более чем через четыре часа после взлёта Roc совершил посадку в Мохаве.

Сегодняшний запуск был 14-м испытательным полётом Roc. Запуску ТА-1 с двигателем предшествовали испытания на отделение прототипа TA-0 без двигателя и два испытательных полёта Roc в режиме «captive-carry» с подвешенным TA-1.

Также в ходе вчерашних испытаний впервые был задействован ракетный двигатель Hadley компании Ursa Major Technologies. Основные задачи нынешних испытаний включали безопасное отделение ТА-1 от самолёта-носителя, запуск двигателя Hadley, ускорение, устойчивый набор гиперзвуковым планером высоты и управляемое приводнение в Тихом океане.

Руководители Stratolaunch заявили в беседе с журналистами, что не могут раскрыть максимальную скорость или высоту полёта ТА-1, сославшись на «собственные соглашения» с неуказанными заказчиками. «В рамках нашего успешного выполнения целей испытаний мы достигли режима высокого сверхзвука, приближающегося к гиперзвуковому полёту (скорость выше 5 Махов)», — сказал Захари Кревор (Zachary Krevor), президент и исполнительный директор Stratolaunch.

Аарон Кассбир (Aaron Cassebeer), старший вице-президент по проектированию и эксплуатации в Stratolaunch, сообщил, что все основные цели испытаний были выполнены. «В настоящее время у нас есть хорошие возможности для продолжения запланированной серии испытаний», — отметил он.

Следующий прототип ТА-2, в отличие от ТА-1, предназначен для многоразового использования. Его лётные испытания планируется начать во второй половине года. Ещё один прототип многоразового использования ТА-3 находится в стадии строительства.

Китай заявил о разработке самого мощного детонационного двигателя для гиперзвуковых полётов

В китайском рецензируемом журнале Propulsion Technology опубликована статья о проекте комбинированного детонационного ротационного двигателя для гиперзвуковых полётов. Согласно моделированию, двигатель сможет разгонять воздушное средство до скорости 16 Маха. Это самая смелая на сегодня заявка в сфере гиперзвуковых полётов, реализация которой может не задержаться.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

За последние годы Китай много говорит о разработке двигателей для гиперзвуковых полётов. Но это не только разговоры. Достаточно много становится известно о практических шагах. В сентябре этого года, например, в небо поднимался беспилотник с детонационным ротационным двигателем. Также сообщается о многочисленных испытаниях прототипов в аэродинамических трубах. Есть даже экзотические случаи, как гиперзвуковые двигатели на угле (на угольной пыли, точнее). Наверняка о многом не сообщается по соображениям секретности, но отрицать движение вперёд тоже нельзя. Новые разработки быстро доводят до прототипов и либо отбрасывают, либо продолжают доводить до ума.

Идея нового комбинированного детонационного ротационного двигателя заключается в том, что до достижения скорости 7 Маха двигатель работает на принципе создания вращающегося фронта волны детонирующего топлива. Такой двигатель способен работать в большом диапазоне мощностей и сможет поднять самолёт с взлётной полосы и также позволить приземлиться на полосу с малой дозвуковой скоростью.

На скорости выше 7 Маха скорость набегающего воздуха начинает мешать работе двигателя. Топливо перестаёт нагреваться, и детонация может сорваться. Китайские инженеры предложили добавить к задней части двигателя небольшой кольцевой блок с наклонной детонационной камерой. Тогда на скорости свыше 7 Маха вращательная детонация прекратится, и начнёт работать линейная и, фактически, прямоточная.

 Источник изображения: Beijing Power Machinery Institute

Источник изображения: Beijing Power Machinery Institute

Разработчики из Пекинского института энергетического машиностроения признают, что моменты перехода от одного вида детонации к другому остаются сложным процессом, когда двигатель может работать неустойчиво. По крайней мере, об этом говорит моделирование. Дальнейшая работа и испытания в аэродинамической трубе помогут добиться оптимальной конструкции рабочих камер и перейти к созданию масштабного прототипа.

Следует сказать, что примерно по такому же пути пошла американская компания GE Aerospace. Но она после стадии разгона на принципе вращательной детонации переходит на прямоточный ракетный реактивный двигатель. В этом есть плюсы и минусы. КПД топлива падает, и растёт его расход, хотя устойчивость перехода между режимами будет выше. Если китайцам получится совместить ротационный детонационный двигатель и линейный детонационный двигатель, то КПД такого двигателя во всех режимах полёта будет приближаться к 80 %.

Самый большой в мире самолёт выполнил первый полёт с заправленным гиперзвуковым планером

Огромный самолёт Roc компании Stratolaunch впервые поднял в воздух полностью заправленный гиперзвуковой аппарат Talon-A. Последний работает на жидком топливе и со временем отправится в самостоятельный полёт. Самолёт стал для него испытательным стендом, благодаря которому компания начнёт продавать услуги по тестированию гиперзвукового оборудования и технологий всем желающим.

 Источник изображений: Stratolaunch/Matt Hartman

Источник изображений: Stratolaunch/Matt Hartman

Для двухфюзеляжного самолёта «Птица Рух» (Roc) с размахом крыльев 117 м полёт с заправленным гиперзвуковым аппаратом стал 12-м в лётной карьере. Полёт длился 3 ч 22 мин. Для крепления полезной нагрузки — прототипа гиперзвукового планера Talon-A — между двух фюзеляжей под крылом закреплён специальный пилон с лебёдками. На аэродроме планер подтягивается к пилону и закрепляется. В воздухе на высоте 10 тыс. метров планер будет отделяться и на своих жидкостных двигателях разовьёт скорость свыше 5 Маха, после чего сам приземлится на ВПП.

В планере предусмотрены множественные отсеки, в том числе с ограниченным доступом, в которых можно будет испытывать электронику и механизмы для будущих гиперзвуковых самолётов и ракет. Так, компания Stratolaunch уже подписала договор на проведение пяти гиперзвуковых испытаний с таким крупным представителем ВПК США, как компания Leidos.

Компанию Stratolaunch в 2011 году основал Пол Аллен (Paul Allen) — один из основателей Microsoft. Пол умер в 2018 году и тем самым отправил компанию в свободный полёт. В 2019 году руководство Stratolaunch приняло решение отказаться от идей Пола по организации «воздушного старта» — отправке ракет в космос из-под крыла самолёта Roc. Вместо этого было решено преобразовать самолёт в летающую лабораторию для испытания сверхзвуковых технологий.

Полёт самолёта 3 декабря с полностью заправленным гиперзвуковым аппаратом приблизил этот момент. После анализа всех данных руководство Stratolaunch примет решение об осуществлении первого запуска гиперзвукового аппарата с включением двигателей. Сброс без включённых двигателей был успешно осуществлён в мае этого года. Пора в полёт на своих крыльях!

Австралийская Hypersonix испытает гиперзвуковой беспилотник, сделанный по заказу Пентагона

В рамках программы подведомственного Пентагону подразделения Defense Innovation Unit (DIU) уже летом следующего года австралийская компания Hypersonix Launch Systems проведёт испытания гиперзвукового летательного аппарата — контракт на его создание австралийцы заключили с американскими военными.

 Иллюстрация. Источник изображения: Hypersonix

Иллюстрация. Источник изображения: Hypersonix

DART AE, над которым ведётся работа, будет представлять собой трёхметровый, 300-килограммовый демонстрационный аппарат с прямоточным воздушно-реактивным двигателем. Ожидается, что он сможет достигать гиперзвуковой скорости в 7 Махов. Детали первых испытаний пока уточняются и станут известны в следующем году. Но уже ясно, что речь идёт о создании беспилотного аппарата.

Летательный аппарат должен быть готов уже следующим летом — Пентагон наращивает усилия по развитию гиперзвуковых технологий. Подразделение DIU, подведомственное Пентагону, характеризует себя как структуру, фокусирующую усилия на ускорении внедрения коммерческих технологий и решений двойного назначения для быстрого решения оперативных задач.

В рамках оборонных инициатив Пентагона DIU представила проект HyCAT (high-cadence testing capabilities), обеспечивающий коммерческим компаниям возможность разрабатывать многоразовые и недорогие тестовые летательные средства и снизить нагрузку на ресурсы самого американского Министерства обороны. Также известно, что DIU заключили контракты с компанией Fenix Space на создание специальной буксировочной платформы для запусков, а также с компанией Rocket Lab, которая занимается подготовкой полёта суборбитальной гиперзвуковой ракеты Hypersonic Accelerator Suborbital Test Electron (HASTE).

На пороге гиперзвука: самый большой в мире самолёт произвёл тестовый сброс гиперзвукового планера

Компания Stratolaunch сообщила об успешном отделении в воздухе прототипа гиперзвукового планера. Планер крепится на пилоне под крылом двухфюзеляжного самолёта Roc с размахом крыльев 117 метров. Первые испытания планера с преодолением планки скорости в 5 Махов начнутся в конце этого лета. Гиперзвуковой планер отделится от самолёта в воздухе и разовьёт рекордную скорость, после чего приземлится на аэродром.

 Гиперзвуковой аппарат компании в представлении художника. Источник изображений: Stratolaunch

Гиперзвуковой аппарат компании в представлении художника. Источник изображений: Stratolaunch

Мечтой основателя компании Stratolaunch Пола Аллена (также одного из основателей компании Microsoft), был космос — запуск ракет с гигантского самолёта-носителя. Для этого аэрокосмическая компания построила самый большой в мире по размаху крыльев самолёт Roc, взяв имя у легендарной птицы из арабских сказок. Самолёт Roc сам стал легендой. В движение его приводят шесть двигателей от Boeing 747, а садится он на 28 колёс шасси. Но со смертью Пола в 2018 году проект Stratolaunch стал испытывать финансовые трудности и о космосе мечтать уже не пришлось.

 Момент сброса протипа

Момент сброса первого прототипа

Управляющая компания решила переделать самолёт Roc в летающую лабораторию для испытания гиперзвуковых платформ от материалов до конструкций и электроники. Непосредственно для испытания решено было создать гиперзвуковой планер, который бы сбрасывался с самолёта в воздухе и развивал бы необходимую скорость самостоятельно. Так был предложен проект планера Talon-A и система его подвеса под крыло самолёта-носителя.

 Пилон для крепления и сброса гиперзвукового планера

Пилон для крепления и сброса гиперзвукового планера

Самолёт-носитель был испытан продолжительными полётами пять раз или около того. Первый прототип гиперзвукового планера TA-0 испытывался только как макет для проверки системы монтажа и крепления к пилону. В прошлую субботу (13 мая) прототип впервые испытали на отделение от пилона в воздухе. Разделение прошло успешно и команда Stratolaunch уверена, что это привело компанию на порог гиперзвука — испытания следующего уже летающего на скорости сверх 5 Махов прототипа начнутся в конце этого лета.

 Самолёт-носитель Roc

Самолёт-носитель Roc

Это будет прототип TA-1. ОН будет беспилотным, как и все последующие аппараты. Самолёт-носитель поднимет его на высоту 10 тыс. м, после чего произойдёт отделение и самостоятельный полёт с последующим приземлением на взлётно-посадочную полосу.

Разработчики гиперзвуковых самолётов Stargazer и Destinus заявили о прогрессе: идут испытания двигателей и прототипов

Гражданская сверхзвуковая авиация завершила свою историю 20 лет назад с последним полётом «Конкорда». Сегодня она начинает делать попытки к возрождению, и даже на более высоком уровне — гиперзвуковом. Проектов много, но особенного прогресса пока не видно. Но на два из них стоит обратить внимание — это американский проект самолёта Stargazer компании Venus Aerospace и европейский Destinus одноимённой швейцарской компании с русскими корнями.

 Источник изображений: Venus Aerospace

Stargazer. Источник изображений: Venus Aerospace

Оба проекта находятся в динамическом развитии, финансово поддерживаются сторонними капиталами и демонстрируют прогресс.

Компания Venus Aerospace из Хьюстона сообщила об успешных стендовых испытаниях двигательной установки для гиперзвукового самолёта Stargazer. Двигатели аппарата будут ротационно-детонационными. Такие двигатели обычно имеют кольцевую камеру сгорания с простенком. Топливо впрыскивается в простенок либо порциями, тогда это будет импульсный двигатель, либо непрерывно. Импульсные детонационные двигатели (ДД) в отличие от двигателей с непрерывной детонацией сжигают меньше топлива, они эффективнее, но тяга будет меньше. В России, кстати, разрабатывают импульсные ДД.

 Общий принцип работы РДД (https://aerospaceamerica.aiaa.org)

Общий принцип работы РДД. Источник изображения: aerospaceamerica.aiaa.org

Кольцевой фронт ударной волны в двигателе движется намного быстрее скорости звука и открывает путь к гиперзвуковым полётам на скоростях более 5 Маха. Самолёт Stargazer будет развивать скорость до 9 Махов. Это будет позволять ему, например, доставлять пассажиров из Токио в Лос-Анджелес менее чем за час, тогда как сегодня на такое путешествие уйдёт около 11 часов. Правда, этот час придётся любоваться чернотой космоса и крутым изгибом горизонта, а не белоснежными облаками.

Разработчики Stargazer утверждают, что детонационные двигатели в штаб-квартире компании в Хьюстоне работали как требуется, вращая в камере сгорания огненный торнадо со скоростью 20 тыс. оборотов в секунду. Что более важно, в новых испытаниях впервые было использовано топливо комнатной температуры, что делает его пригодным для обычной и простой эксплуатации в самолётах.

 Стендовые испытания РДД

Стендовые испытания РДД Venus Aerospace

«Теперь у нас есть и технические знания, и инженерные наработки, чтобы полностью перейти к следующим этапам разработки и лётным испытаниям», — сказал глава компании.

После испытаний бывший администратор NASA и конгрессмен США Джим Брайденстайн сказал: «Это представляет собой ключевое продвижение к реальным летающим системам, как для оборонного применения, так и в конечном итоге для коммерческих высокоскоростных путешествий». В NASA также занимаются разработкой подобных двигателей и успешно испытывают их прототипы.

Компания Venus Aerospace работает над концепцией гиперзвукового самолета с 2020 года. За короткий срок она собрала $33 млн на проект. Теперь она начнёт гиперзвуковые лётные испытания с запуска 9-кг беспилотника, который, как надеется компания, сможет достичь скорости 5 Махов. После этого будет построен прототип Stargazer, хотя дата его создания официально пока не озвучена.

Добавим, это будет аппарат на 12 пассажиров. Его длина составит около 46 м, а ширина — до 31 м. Полёт будет проходить на высоте около 52 км со скоростью 3086 км/ч. Вес самолёта будет достигать 68 т.

 Источник изображений: Destinus

Источник изображений: Destinus

Европейский проект с русскими корнями — швейцарская компания Destinus, основанная бывшим владельцем «Техносилы» Михаилом Кокоричем — создаёт гиперзвуковой самолёт, который будет летать со скоростью 5 Махов. Это как раз та граница, с которой скорость движения официально считается гиперзвуковой. Отличительной чертой проекта Destinus является использование водородного двигателя. Это чисто, легко и энергоэффективно.

Компания Destinus со штаб-квартирой в Швейцарии и инженерными офисами в Испании, Франции и Германии с общим штатом сотрудников 120 человек создана в 2021 году. На её счету уже два лётных прототипа и готовится третий, который начнёт испытания до конца текущего года. Это будет уже сверхзвуковой аппарат (предыдущие летали на дозвуковой скорости). Впрочем, разгон до сверхзвука с использованием водородного топлива ожидается только в 2024 году или позже. Прототип Destinus 3 имеет в длину те же 10 м, что и предшественник, но будет в 10 раз тяжелее и 20 раз сложнее в плане конструкции и двигательной установки.

 Прототип Destinus 2

Прототип Destinus 2

Прототипы Destinus представляют собой самолеты со смешанным корпусом в форме волнолета — гиперзвуковой конструкции, впервые задуманной в 1950-х годах, но так и не доведённой до производства. "Её цель [формы] состоит в том, чтобы вы могли ездить поверх ударных волн, которые генерируются самим самолётом. Это довольно эффективная форма, в которой вы можете использовать меньше топлива для полёта, потому что у вас будет меньше сопротивление воздуха».

Естественно, с каждым новым прототипом Destinus совершенствует и корректирует дизайн. Через два десятилетия команда ожидает, что самолёты, с которыми она работает, будут выглядеть несколько иначе, чем те, которые она тестирует сейчас. Ожидается, что к 2030-м годам будет создан 25-местный самолёт ограниченной дальности полёта. Это будет транспорт бизнес класса. Гиперзвуковой самолёт большей вместимости появится к 2040-м годам, и он будет иметь уже места даже эконом класса.

Интересно добавить, что Destinus не ждёт милости от инвесторов и стремится зарабатывать на свои проекты сама. Так, в прошлом месяце она купила голландскую компанию OPRA — производителя промышленных газотурбинных двигателей и теперь Destinus Energy будет получать средства от продажи турбин.


window-new
Soft
Hard
Тренды 🔥
ИИ научили генерировать тысячи модификаций вирусов, которые легко обходят антивирусы 12 мин.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 23 мин.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 2 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 2 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 3 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 4 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 5 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 5 ч.
Мошенники придумали, как обманывать нечистых на руку пользователей YouTube 6 ч.
На Открытой конференции ИСП РАН 2024 обсудили безопасность российского ПО и технологий искусственного интеллекта 6 ч.