Сегодня 13 января 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → квантовые вычисления
Быстрый переход

Японские физики добились квантовой когерентности при комнатной температуре — это упростит квантовые компьютеры

Согласованные квантовые состояния боятся любых помех, что усложняет реализацию квантовых компьютеров. Для снижения шумов их охлаждают до запредельно низких температур, но в идеале квантовые системы должны работать при комнатной температуре, без чего невозможно их массовое применение. Возможно, в этом поможет новая работа японских учёных, которые смогли добиться квантовой когерентности в обычных условиях без криогенного охлаждения.

 Источник изображения: Science Advances

Источник изображения: Science Advances

Физики изучили квантовые свойства таких молекул, как хромофоры. Они могут поглощать электромагнитное излучение определённых длин волн и излучать также в определённом диапазоне. Ранее на базе хромофоров были созданы фотоэлементы для перспективных солнечных панелей, однако в контексте нужд квантовых вычислений или квантовых датчиков они не изучались.

Японские физики поместили молекулы хромофоров в так называемые металл-органические каркасы (MOF). Это микропористый материал, который способен абсорбировать и фактически изолировать друг от друга предельно малые порции вещества. Пары электронов в молекулах хромофоров оказывались в суперпозиции по отношению друг к другу.

Микроволновое зондирование показало, что спины электронов остаются в когерентном состоянии около 100 нс. Дальнейшая настройка систем обещает ещё больше увеличить время квантовой когерентности в представленной платформе, что можно считать прорывом, поскольку всё это получено при обычной комнатной температуре, что очень дёшево и намного доступнее, чем современные квантовые криогенные платформы.

Сверхохлаждённые кубиты могут оставаться в согласованном (когерентном) состоянии квантовой неопределённости вплоть до нескольких миллисекунд. В этом они выгодно отличаются от предложенной японцами схемы. Однако цена вопроса и стоимость эксплуатации криогенных систем также кратно снижает практическую ценность квантовых расчётов и симуляций.

Остаётся надеяться, что японские физики смогут довести свою разработку до уровня квантовых вычислителей или квантовых датчиков. Пока же это только демонстрация возможностей, с которой ещё работать и работать, о чём они сообщили в статье в журнале Science Advances.

Хоронить RSA-шифрование с помощью квантовых компьютеров ещё рано, выяснили российские учёные

Примерно год назад группа китайских учёных опубликовала статью, в которой сообщила о скорой смерти широко используемого метода RSA-шифрования с открытым ключом. На небольшом квантовом компьютере они показали, что взломать RSA можно с использованием меньшего числа кубитов, чем длина ключа. В этом таилась колоссальная угроза безопасности критически важным данным, что нужно было изучить. Всё оказалось не так просто.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Анализом работы китайских коллег занялась группа учёных Университета МИСИС, РКЦ и «Сбера». Считается, что большинство используемых в настоящее время криптосистем с открытым ключом защищены от атак через обычные компьютеры, но могут быть уязвимы для квантовых платформ. Поскольку компания IBM уже представила 433-кубитовый квантовый процессор Osprey, то ключ RSA-2048 теоретически может быть взломан в любой момент. В работе китайских специалистов доказывалось, что для этого хватит 372 кубитов, а не 20 млн, как считалось ранее.

Китайские исследователи использовали 10-кубитную платформу для разложения на простые множители (факторизацию) 48-битового ключа.

«Основываясь на классическом методе факторизации Шнорра, авторы используют квантовое ускорение для решения задачи поиска короткого вектора в решётке (SVP, shortest vector problem) небольшой размерности — что позволило им сделать сенсационное заявление о том, что для факторизации, т.е. разложения большого числа на множители, требуется меньше кубитов, чем его длина, а также квантовые схемы меньшей глубины, чем считалось ранее», — поясняют в пресс-релизе представители НИТУ МИСИС.

Российские исследователи пришли к выводу, что алгоритм коллег нерабочий из-за «подводных камней» в классической части и сложности реализации квантовой.

«Метод Шнорра не имеет точной оценки сложности. Основная трудность заключается не в решении одной кратчайшей векторной задачи, а в правильном подборе и решении множества таких задач. Из этого следует, что этот способ, вероятно, не подходит для чисел RSA таких размеров, которые используются в современной криптографии», — сказал Алексей Федоров, директор Института физики и квантовой инженерии НИТУ МИСИС, руководитель научной группы «Квантовые информационные технологии» РКЦ.

Предложенный китайскими учёными метод даёт только приближённое решение задачи, которое можно легко получить для небольших чисел и маленьких решёток, но практически невозможно для реальных длинных ключей, что российские учёные подробно объяснили в статье в журнале IEEE Access (ссылка на arxiv.org).

В то же время российские учёные рекомендуют не расслабляться, а готовиться к постквантовой криптографии. Появляются новые платформы и новые алгоритмы, и в один не очень прекрасный день окажется, что надёжные ещё вчера RSA-ключи вдруг перестали защищать ваши данные.

В Японии заработал первый практический квантовый компьютер IBM — это мощнейшая 127-кубитная система Quantum Eagle

Компания IBM сообщила, что на базе Токийского университета начал работать мощнейший в регионе квантовый компьютер — 127-кубитовая платформа IBM Quantum Eagle. Передача компьютера осуществлена в апреле этого года. От японских партнёров компания IBM рассчитывает получить идеи практического использования нового класса вычислительных устройств. Они обещают невообразимую мощь в обработке данных, но как это выглядит на практике, никто не знает.

 Источник изображения: IBM

Источник изображения: IBM

Ранее IBM уже передавала японским учёным квантовые системы. Так, в 2021 году на площадке Kawasaki Токийского университета была развёрнута 27-кубитовая система IBM Q System One. Новый компьютер несёт процессор IBM Eagle со 127 кубитами и обещает многократно ускорить выполнение расчётов.

Классический подход предполагает, что для начала практического применения квантовых компьютеров нужны будут системы с десятками и сотнями тысяч физических кубитов. Согласно обоснованиям специалистов Google, например, для исправления ошибок в одном логическом кубите необходимо 1000 физических кубитов. Тем самым безошибочный квантовый компьютер на 1000 кубитов потребует 1 млн физических кубитов для коррекции ошибок. Это означает, что практическую ценность Google рассчитывает увидеть в системах с тысячами и десятками тысяч кубитов. В IBM заявляют, что это не так.

В опубликованной этим летом работе специалисты IBM доказывают, что практическая ценность квантовых систем начинается со 100 кубитов. Нетрудно догадаться, что платформа IBM Eagle со 127 кубитами заявлена как первая практическая, о чём также сейчас заявили японские партнёры компании. Это тем более важно, что современные обычные суперкомпьютеры не способны эмулировать более 50 кубитов при работе с квантовыми алгоритмами.

Развёрнутая в Японии платформа IBM Quantum Eagle будет использоваться местным консорциумом Quantum Innovation Initiative (QII), в который вошло около двух десятков учебных заведений страны и компаний. Квантовую систему будут обучать искать новые материалы, лекарства, научат работать с финансами, физикой, химией и социологией. Для IBM это сулит впечатляющей отдачей в области, куда ещё никто серьёзно не проникал. Затраты на это огромны, но благотворительности в этом нет. Пионеры получат всё.

Не сбоящий квантовый компьютер стал ближе — IBM сократила число кубитов для коррекции ошибок

Квантовые компьютеры чрезвычайно чувствительны к помехам любого рода — электромагнитным, механическим и температурным. Для борьбы с ними квантовые системы помещают на прочное основание, экранируют и охлаждают до температур около абсолютного нуля. Но даже такая запредельная защита не избавляет от ошибок — первейших врагов запускаемых алгоритмов. Обойти проблему можно двумя способами: физически и алгоритмически. Компания IBM выбрала второй путь.

 Источник изображения: IBM

Источник изображения: IBM

Как доказали специалисты Google, полностью отказоустойчивый квантовый компьютер можно создать в том случае, если каждый логический кубит, состояния которого используются для выполнения расчётов, будет поддержан массивом из 1000 физических кубитов, исправляющих его ошибки. Тем самым для создания универсального квантового компьютера, имеющего прикладную ценность, необходима квантовая платформа из миллиона кубитов. Такое требование отдаляет время появления универсальной коммерческой квантовой системы на десятилетия, если не больше, с чем категорически не готовы мириться в компании IBM.

В IBM работают над алгоритмами и конфигурациями логических кубитов, которые позволят исправлять многочисленные ошибки кубитов с меньшими затратами на предназначенные для этого цепи. Так, ещё в начале этого лета вышла статья, в которой исследователи IBM доказывают практическую ценность квантовой платформы со 100+ кубитами на примере собственной системы на базе 127-кубитового процессора Eagle.

Сегодня IBM пошла ещё дальше. Специалисты компании научно обосновали возможность на порядок сократить необходимое для коррекции ошибок число физических кубитов. В этом помогут как новые алгоритмы, так и новая архитектура в конфигурации кубитов. По оценкам исследователей компании, новый подход потребует только 1/10 часть физических кубитов, используемых в настоящее время для исправления ошибок.

«Эти методы являются ступенькой на пути к миру отказоустойчивых вычислений, — рассказал исследователь IBM Сергей Бравый, — и этот новый ... код приближает этот мир. Это многообещающий результат, указывающий нам на то, где мы должны искать еще более совершенные коды, исправляющие ошибки».

В то же время исследователи признают: «Практическая коррекция ошибок — далеко не решённая проблема. Однако эти новые коды и другие достижения в данной области повышают нашу уверенность в том, что отказоустойчивые квантовые вычисления не просто возможны, а возможны без необходимости создания неоправданно большого квантового компьютера».

Квантовая суперхимия впервые проявила себя в эксперименте — это найдёт применение в квантовых вычислениях

Учёные из Чикагского университета стали первыми свидетелями явления, названного «квантовой суперхимией». Эффект давно был предсказан теоретически, но впервые наблюдался вживую только сейчас. В основе явления лежит коллективное поведение множества атомов, как одного большого атома. Такие «суператомы» будут вести себя иначе в химических реакциях и могут стать источником необычных материалов, что пригодится в сфере квантовых вычислений и не только.

 Источник изображения: John Zich / University of Chicago

Источник изображения: John Zich / University of Chicago

Отдельные атомы приобретают одинаковые квантовые состояния и становятся неотличимыми друг от друга при сильнейшем охлаждении — возникает так называемый конденсат Бозе–Эйнштейна. Предполагалось, что в таком состоянии облако атомов будет вести себя как один большой атом, что заставит те же химические реакции проходить по-иному. При обычных условиях пара атомов сталкивается и может образовать молекулу. Но что будет, если столкнутся «суператомы» — облака идентичных по своим квантовым свойствам атомов? Как минимум, это ускорит химические реакции, говорит теория. И учёные из Чикагского университета действительно увидели такие процессы.

«Вы больше не рассматриваете химическую реакцию как столкновение между независимыми частицами, а как коллективный процесс, — рассказали авторы исследования. — Все они реагируют вместе, как единое целое».

Прежде всего, отметим, идентичность квантовых состояний ведёт к тому, что атомы становятся квантово запутанными. После реакции взаимодействия «суператомов» образуются «супермолекулы» с такими же идентичными квантовыми состояниями, включая запутанность. Ценность таких «суперреакций» в том, что мы получаем возможность создать достаточно большие кубиты — размером от молекул до вполне осязаемых элементов квантовых компьютеров. Такой «суперкубит» будет меньше бояться случайных помех и сможет дольше удерживать квантовые состояния в процессе вычислений. Это своего рода вторжение или масштабирование квантовых микроявлений в наш макромир.

Это открытие может проложить путь к новым технологиям в области квантовой химии, квантовых вычислений и помочь учёным в изучении законов физики. Пока эта суперхимия проводилась только с двухатомными молекулами, но команда планирует расширить работу и включить в неё более сложные молекулы.

В России создали 16-кубитный квантовый компьютер

На днях на Форуме будущих технологий физики из ФИАН вместе с коллегами из Российского квантового центра представили 16-кубитный квантовый компьютер на ионах иттербия. Примерно за минуту компьютер выполнил моделирование молекулы гидрида лития, на что обычному компьютеру потребовалось бы гораздо больше времени.

 Квантовый компьютер на ионах. Источник изображения: Фонд НТИ

Квантовый компьютер на ионах. Источник изображения: Фонд НТИ

«У нас всё получилось, — подвел итог вычислениям руководитель «Росатома» Алексей Лихачев, который доверил удалённо запустить вычисления президенту России Владимиру Путину. — Это практическая задача».

Гидрид лития — это неорганическое соединение, которое применяется, в частности, в атомной энергетике, как пояснили в агентстве ТАСС, которое осветило событие.

Согласно плану развития квантовых технологий в России, государство выделило порядка 100 млрд рублей на создание 100-кубитового квантового компьютера к 2025 году. Российские учёные сделали ставку на кубиты из ионов, которые демонстрируют большее время когерентности и, следовательно, дают больше шансов на успешное завершение квантовых алгоритмов с меньшим уровнем ошибок.

Прототип четырёхкубитового компьютера на ионах был представлен в 2021 году. Затем учёные расширили платформу до использования кудитов вместо кубитов — это сродни увеличению разрядности каждого кубита, что позволяет наращивать производительность без увеличения числа физических кубитов. В этом году система разрослась до 16 кубитов. В следующем году учёные обещают представить 20-кубитовый процессор. Возможно в 2025 году 100-кубитовая система и не появится, но если в ход пойдёт увеличение разрядности через кудиты, то план развития квантовых технологий в России вполне может быть выполнен и даже перевыполнен.

Симулятор квантового компьютера запустили на Commodore 64 — всё уложилось в 200 строк на BASIC

Доставайте свои «спектрумы», «амиги» и «электроники». Похоже, народная забава «запусти Doom на калькуляторе» переходит на следующий уровень. Энтузиаст под ником Davide «dakk» Gessa (Давид Гесса) представил на GitHub проект, который позволяет запустить эмулятор квантового компьютера на системе Commodore 64, которая явилась в мир в начале 80-х годов прошлого века.

 Источник изображения: hackaday.com

Источник изображения: hackaday.com

В 200 строк кода на BASIC любитель программировать на антиквариате вместил эмуляторы таких квантовых логических схем, как вентили Паули (X, Y и Z), вентили Адамара (Hadamard), управляемое «НЕ» (CNOT) и вентиль Фредкина (управляемый обмен или SWAP). На основе этих элементов был представлен ряд квантовых цепей для симуляции работы двухкубитового квантового вычислителя.

Может показаться, что два кубита — это забава. И всё же, для обучения работы с кубитами и квантовой логикой это неплохое подспорье и в ряде случаев оно может помочь в обучении и в знакомстве с миром квантовых вычислений. Наверняка кто-то захочет перенести этот проект на другие вычислительные платформы. Поэтому ждём новостей о запуске эмуляторов квантовых вычислителей на Xbox, Sony PlayStation, Nintendo и Электронике МК-64.

В США получили Q-кремний — новый магнитный материал для квантовых компьютеров и чипов на спинтронике

Основа микроэлектроники — кремний — может продолжить жизнь в эпоху квантовых компьютеров, заявили учёные из США. Для этого они получили новый материал из аморфного кремния, который назвали Q-кремний. Необычной особенностью Q-кремний стала намагниченность при комнатной температуре, что открывает путь к использованию в электронике спинов электронов вместо зарядов.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Открытие сделали учёные из Университета штата Северная Каролина (NCSU). Они облучали обычный аморфный кремний короткими (наносекундными), но мощными лазерными импульсами. Кремний плавился и быстро подвергался охлаждению. После такой процедуры «закаливания» получался материал с нетипичными для кремния свойствами — он начинал магнититься без приложения внешнего магнитного поля. Иначе говоря, кремний превращался в ферромагнетик при комнатной температуре.

Подобное свойство может помочь объединить в одном кремниевом чипе обычные электронные цепи и цепи, построенные на работе с магнитным моментом электрона. Это молодой раздел электроники, и он называется спинтроника. К преимуществам спинтроники можно отнести высочайшую энергоэффективность, поскольку цепи оперируют не токами с их высокими потерями мощности, которая рассеивается теплом, а спинами электронов. Также спинтроника обещает лечь в основу квантовых компьютеров, которые используют магнитный момент электрона как кубит.

О своей работе учёные сообщили в журнале Material Research Letters. Принесёт ли Q-кремний практическую ценность или нет, это современной науке неизвестно. Будем надеяться, что открытие окажется полезным.

Google заявила о достижении квантового превосходства — квантовый компьютер решил задачу в 220 млн раз быстрее обычного

На сайте ArXiv обнаружился препринт статьи исследователей Google, в котором заявлено о достижении компанией квантового превосходства в вычислениях. Это означает, что квантовые компьютеры за секунды справляются с алгоритмами, на решение которых классическим компьютерам требуются десятки и даже тысячи лет. Четыре года назад компания уже объявляла о подобном достижении, но его оспорили. Сегодня Google уверена в себе как никогда.

 Источник изображения: Google

Источник изображения: Google

Ещё в 2019 году Google заявила, что её 53-кубитовый компьютер Sycamore за 200 секунд выполнил алгоритм, на исполнение которого суперкомпьютеру IBM Summit потребовалось бы 10 тыс. лет. Тем самым компания заявила о достижении квантового превосходства. За такое заявление Google подверглась аргументированной критике и затихла на долгие четыре года. Новая работа — «Фазовый переход в случайной выборке цепей» — фактически повторяет предыдущий эксперимент, но уже на более мощной 70-кубитовой вычислительной платформе. Для квантовых систем с их бесконечной вероятностью значений от 0 до 1 на каждом кубите увеличение платформы на 25 кубитов экспоненциально или в сотни миллионов раз увеличивает квантовую производительность.

С таким ростом производительности Google надеется закрепиться в области, куда ещё не ступала нога айтишника. С практической точки зрения алгоритм не имеет никакой ценности — на квантовых схемах генерируются случайные состояния, а система их считывает до нарушения когерентности (разрушения квантового состояния). По словам Google, на 70 кубитах задача решается за 6,5 с. Самый мощный суперкомпьютер современности — экзафлопсный Frontier — будет исполнять этот же алгоритм 47 лет. Заметим, это не 10 тыс. лет, как в предыдущем заявлении, но тоже впечатляет. Вероятно, Google сделала выводы из нападок на неё в прошлый раз и решила выступить не так радикально.

Кстати, специалисты Google, по заявлению The Telegraph, также далеко обогнали китайских коллег, которые, по словам издания, считаются лидерами в области квантовых вычислений.

В статье специалисты компании резюмируют: «Мы пришли к выводу, что наша демонстрация находится в режиме за пределами классических квантовых вычислений». Иными словами, классические системы не способны обрабатывать квантовые алгоритмы за разумное время. В интервью изданию The Telegraph исполнительный директор занятой квантовыми проблемами компании Riverlane Стив Брайерли (Steve Brierley) заявил: «Споры о том, достигли ли мы или действительно можем достичь квантового превосходства, теперь разрешены».

Но всё ли так хорошо? Глава компании Universal Quantum из Брайтона Себастьян Вайдт (Sebastian Weidt) отметил, что было бы неплохо, если бы квантовые компьютеры показали больше практической ценности. В ответ на заявление Google он сказал: «Это очень хорошая демонстрация квантового преимущества. Хотя с академической точки зрения это большое достижение, используемый алгоритм не имеет практического применения в реальном мире».

Тем самым Google доказала квантовое превосходство в области, которая не имеет никакой практической ценности. Впрочем, это не совсем так. Ценность есть и заключается она в изучении устойчивости квантовых вычислений к шумам, а это краеугольный камень будущих универсальных квантовых компьютеров.

В то же время даже такой синтетический алгоритм позволил узнать нечто новое об устойчивости квантовых состояний к помехам. Специалисты смогли оценить влияние ошибок на результаты вычислений, что в ряде случаев вело к появлению новых состояний в системе. Эти оценки могут помочь в исправлении ошибок или в смягчении их влияния на конечный результат. Но можно ли это назвать квантовым превосходством? В любом случае, Google снова выбросила на арену научных споров «красную тряпку». Это гарантировано вызовет волну новых диспутов на тему квантового превосходства и это просто замечательно. Истина рождается в споре.

Учёные предложили записывать квантовую информацию в звуковых волнах

В обычном мире невозможно произнести слова в пустой комнате, а спустя время зайти и послушать сказанное ранее. Но в квантовом мире такое возможно и это открывает путь к механическим записывающим устройствам для квантовых компьютеров — данные предложили хранить в звуковых волнах.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Очевидно, что без возможности запоминать промежуточный результат квантовые вычисления будут сильно ограничены, а их масштабирование столкнётся с трудностями. Группа исследователей из Калифорнийского технологического института предложила полностью новый подход для запоминания квантовой информации. Учёные предложили переводить электрические квантовые состояния в звуковые волны и извлекать их, когда это необходимо.

Разработка опирается на то, что монокристаллы при сверхнизких температурах могут исключительно долго находиться в состоянии колебаний. Этот эффект наблюдается в колебаниях таких квазичастиц, как акустические фононы. Частота колебаний лежит в гигагерцовом диапазоне и время жизни фононов значительно превышает все иные альтернативные методы механической записи информации, утверждают исследователи.

Чтобы передать электрическое квантовое состояние на «звучащий» фонон достаточно поместить заряд на колеблющийся кристалл. Воздействуя на заряд (заряжённый кристалл), мы меняем частоту колебания фононов и, тем самым, записываем бит информации. Этим обеспечивается электрическая связь между квантовыми платформами и механической запоминающей системой.

Учёные подчёркивают, что до них нечто подобное предлагалось сделать на основе пьезоэлектрических элементов. Однако пьезоэлектрики требуют особых материалов и специальных условий производства, тогда как в предложенной ими системе используются самые обычные материалы.

Учёные «раздробили» электрон на три квазичастицы, что поможет создать точный квантовый компьютер

В журналах Nature и Science группа учёных из Вашингтонского университета сообщила об обнаружении признаков теоретически перспективных топологических кубитов — энионов (не путать с анионами). В своё время топологические квантовые вычисления и энионы как кубиты предложил использовать российский физик Алексей Китаев, но с практической и даже экспериментальной реализацией этих возможностей так и не сложилось. Новое открытие обещает с этим помочь.

 Дробление заряда электрона на три части в представлении художника. Источник изображения: Eric Anderson/University of Washington

Дробление заряда электрона на три части в представлении художника. Источник изображения: Eric Anderson/University of Washington

В общем случае топологические квантовые вычисления предполагают использовать топологические кубиты, которые от обычных кубитов отличаются очень высокой устойчивостью к внешним возмущениям. Это означает, что квантовая система будет свободна от ошибок даже при довольно большом числе кубитов в системе. Китаев предложил на роль топологических кубитов двумерные топологические фазы с анионами в которых наблюдается дробный квантовый эффект Холла (FQAH, fractional quantum anomalous Hall).

И вот теперь о надёжном обнаружении признаков дробного эффекта Холла сообщили американские учёные. Открытие знаменует собой первый и многообещающий шаг в создании отказоустойчивого кубита, потому что состояния FQAH могут содержать энионы — странные «квазичастицы», которые имеют лишь часть заряда электрона. Некоторые типы анионов, как предсказывал Китаев, можно использовать для создания так называемых «топологически защищённых» кубитов, устойчивых к любым небольшим локальным возмущениям.

«Это действительно устанавливает новую парадигму для изучения в будущем квантовой физики с дробными возбуждениями», — сказал Сяодун Сюй (Xiaodong Xu), ведущий автор работ, который также является заслуженным профессором физики Boeing и профессором материаловедения и инженерии в Университете Вашингтона.

Добиться заявленного эффекта учёные смогли при постановке эксперимента с двумя «чешуйками» такого двумерного полупроводникового материала, как теллурид молибдена (MoTe2). Одну пластинку толщиной в атом наложили на другую и слегка повернули, чтобы атомные решётки образовали муар. В результате электроны выстроились в структуру, которая воспроизвела новую экзотическую форму материи со своими свойствами.

Например, структура проявила магнетизм без приложения внешнего магнитного поля. И если в обычных условиях для возникновения квантового эффекта Холла требуются сильнейшие магнитные поля, что ставит крест на практической ценности явления, то в новом состоянии вещества внутренний магнетизм привёл к возникновению этого эффекта и к появлению энионов (к «расщеплению» заряда взаимодействующих электронов на дробные и устойчивые части). Из этого возникает устойчивость кубитов и возможность их связанного или запутанного состояния — всё, что нужно для устойчивых квантовых вычислений.

Более того, предложенная платформа обещает помочь в исследовании других не менее экзотических квазичастиц, также предложенных Китаевым в кандидаты топологических кубитов — неабелевых энионов.

«Этот тип топологического кубита будет принципиально отличаться от тех, которые могут быть созданы сейчас, — сказал докторант физики Университета Вашингтона Эрик Андерсон (Eric Anderson), ведущий автор статьи в Science и соавтор статьи в Nature. — Странное поведение неабелевых энионов сделало бы их гораздо более надежными в качестве платформы квантовых вычислений».

Intel представила Tunnel Falls — свой первый квантовый процессор с кремниевыми кубитами

Intel объявила о выпуске 12-кубитного кремниевого чипа Tunnel Falls и его доступности для квантовых исследователей. Используя Tunnel Falls, учёные могут сразу же приступить к экспериментам и расчётам, вместо того чтобы пытаться изготовить свои собственные устройства. В результате становится возможным более широкий спектр исследований, включая изучение основ кубитов и квантовых точек и разработка новых методов работы с устройствами с несколькими кубитами.

 Источник изображений: Intel

Источник изображений: Intel

«Tunnel Falls — это самый совершенный на сегодняшний день чип Intel с кремниевыми спиновыми кубитами, созданный на основе многолетнего опыта компании в разработке и производстве транзисторов. Это следующий шаг в долгосрочной стратегии Intel по созданию полнофункциональной коммерческой системы квантовых вычислений. Несмотря на то, что на пути к устойчивому к ошибками квантовому компьютеру необходимо решить фундаментальные вопросы и задачи, академическое сообщество теперь может изучить эту технологию и ускорить развитие исследований», – сообщил Джим Кларк (Jim Clarke), директор Quantum Hardware, Intel.

Tunnel Falls производится на 300-мм пластинах на фабрике Intel D1. 12-кубитное устройство использует самые передовые возможности промышленного производства транзисторов Intel, такие как литография в экстремальном ультрафиолете (EUV). В кремниевых спиновых кубитах каждый бит информации (0/1) закодирован спином (направлением вращения) одного электрона. Каждое кубитное устройство, по сути, представляет собой электронный транзистор, что позволяет изготавливать его по технологии, аналогичной стандартной линии на основе комплементарных оксидов металлов и полупроводников (CMOS).

Благодаря использованию этой отработанной технологии, производство Tunnel Falls обеспечивает выход годных чипов на уровне 95 % по всей пластине, позволяя получать с каждой пластины более 24 000 рабочих квантовых чипов. Эти чипы могут образовывать конфигурации от 4 до 12 кубитов, которые можно изолировать или использовать в операциях одновременно, в зависимости от потребностей исследователей.

Intel считает, что кремниевые спиновые кубиты превосходят другие технологии кубитов из-за их синергии с передовыми транзисторами. Будучи размером с транзистор (50 × 50 нм), они в миллион раз меньше, чем другие типы кубитов, что, согласно Nature Electronics, «может быть платформой с наибольшим потенциалом для масштабирования квантовых вычислений».

Следует отметить усилия Intel, направленные на дальнейшие исследования аппаратного обеспечения — похоже, что компания не готова остановиться на одном решении. Ведь, как и большинство кубитов, спиновые кубиты на основе полупроводников могут быть реализованы разными способами. Базовая технология позволяет обнаруживать отдельные электроны в изолированных ямах и управлять их спинами, чтобы кодировать информацию в квантовом состоянии.

Существует три подхода к созданию кремниевых спиновых кубитов, включая конфигурацию Loss-DiVencenzo, конфигурацию Single-Triplet (S-T0) и Exchange-Only. «У каждого решения есть свои сильные и слабые стороны с точки зрения изготовления, с точки зрения физики и с точки зрения масштабируемости», — пояснил Кларк. По его словам, Intel изучает множество параметров, таких как разные размеры квантовых точек, разная геометрия, разная длина кубитов. Intel также встраивает в свой чип средства тестирования для определения производительности.

Intel объявила о сотрудничестве с лабораторией физических наук (LPS) университета Мэриленда, Qubit Collaboratory (LQC) в Колледж-Парке, национальным исследовательским центром квантовых информационных наук (QIS), Sandia National Laboratories, университетом Рочестера и университетом Висконсин-Мэдисон для продвижения исследований в области квантовых вычислений. Компания планирует предоставить доступ для разработчиков и исследователей к своему набору инструментов Intel Quantum Software Development Kit (SDK) версии 1.0 в этом году через Intel Developer Cloud.

«Наша цель — подключить Quantum SDK к реальному оборудованию. Это своего рода дезагрегированный подход. На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк.

LPS Qubit Collaboratory (LQC) является одним из исследовательских центров министерства обороны в области квантовых информационных наук (QIS), учреждённых в рамках Закона о национальной квантовой инициативе 2018 г. Intel сотрудничает с LQC в рамках программы Qubits for Computing Foundry (QCF) через Исследовательское управление армии США.

Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Пока Intel не предоставляет чипы Horse Ridge II для криоконтроля, но может сделать это в будущем.

Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства.

По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния.

Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения.

Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK. Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы.

IBM: квантовые компьютеры станут практически полезными раньше, чем ожидалось

Совместная работа инженеров IBM и учёных из Беркли доказала возможность более быстрого достижения практической ценности квантовыми компьютерами, чем это считалось ранее. Не зря волнуются банкиры, не зря. Разработка новых квантовых алгоритмов и оптимизация существующих может как снег свалиться на голову тем, кто не верит в скорое появление нечувствительных к ошибкам квантовых платформ.

 Источник изображений: IBM

127-кубитовый процессор Eagle. Источник изображений: IBM

Доклад о прогрессе квантовых вычислений вышел в журнале Nature в виде научной статьи и даже попал на обложку номера. Если говорить коротко, IBM впервые продемонстрировала, что квантовые системы могут давать точные результаты в масштабе 100+ кубитов, что «превосходит ведущие классические подходы». Это означает, что современные так называемые шумные квантовые компьютеры могут вести расчёты с «классической» точностью без чрезмерных усилий по смягчению ошибок.

Что такое чрезмерные усилия по смягчению ошибок во время квантовых расчётов в серии работ показала компания Google. Согласно исследованию компании, для создания полностью безошибочного квантового компьютера необходимо каждый логический кубит поддерживать массивом из 1000 физических кубитов, которые будут устранять ошибки в одном единственном кубите (регистре) и, фактически, не будут принимать участие в расчётах. Тем самым для практически значимого квантового компьютера из 1000 логических кубитов нужна платформа из миллиона физических кубитов. Сегодня это примерно стадион криогенного оборудования и атомная электростанция в придачу.

Новая работа IBM показала, что даже современный квантовый компьютер можно научить исправлять ошибки алгоритмически без привлечения к этому значительного числа физических кубитов. В качестве испытательной платформы IBM использовала условно новый 127-кубитовый процессор Eagle (в прошлом году компания представила 433-кубитовый Osprey). Оба процессора используют сверхпроводящие кубиты. На системе Eagle была промоделирована динамика спинов в модели материала с магнитными свойствами. Модель демонстрировала намагниченность материала.

Для проверки точности работы квантовой системы одновременно с ней было запущено моделирование на классических суперкомпьютерах в Национальной лаборатории им. Лоуренса в Беркли (Lawrence Berkeley National Lab's National Energy Research Scientific Computing Center, NERSC) и в Университете Пердью. По мере увеличения масштаба модели квантовый компьютер продолжал выдавать точные результаты даже тогда, когда классические методы вычислений перестали справляться с задачей. Добиться такого поразительного результата всего на 100+ кубитах компания IBM смогла благодаря «передовым методам устранения ошибок».

«Мы впервые наблюдаем, как квантовые компьютеры точно моделируют физическую систему в природе, превосходя ведущие классические подходы, — сказал Дарио Гил (Darío Gil), старший вице-президент и директор IBM Research. — Для нас эта веха является значительным шагом в доказательстве того, что современные квантовые компьютеры являются рабочими научными инструментами, которые могут быть использованы для моделирования проблем, чрезвычайно сложных и, возможно, невозможных для классических систем, сигнализируя о том, что мы вступаем в новую эру практической ценности квантовых вычислений».

Подробнее о работе можно узнать в блоге компании IBM. Статья в Nature также свободно доступна по этой ссылке. В компании отдают отчёт в том, что поиск «правильных» алгоритмов — это нетривиальная задача, но она может быстро приблизить появление «утилитарных» квантовых компьютеров, что подтверждает данное исследование.

В IBM стремятся привлечь к разработке алгоритмов как можно больше специалистов из любых сфер деятельности. В следующем году компания обещает завершить развёртывание квантовых компьютеров второго поколения на 433-кубитовых процессорах. Но без алгоритмов — это всё никому не нужное дорогое «железо».

Моделирование «настоящей» физики на 100+ кубитовых платформах уже сегодня востребовано в материаловедении, фармацевтике, логистике и много где ещё. Оно способно привести к скачку в науке и технике. IBM на практике доказала, что такое возможно.

В России резко упало количество поданных заявок на патенты в области квантовых технологий

В 2022 году в России впервые за последние 4 года упало количество поданных заявок на разработки в области квантовых технологий. Снижение составило 40 % и оно вызвано санкциями, сообщает «Коммерсант». Частично это связано с запретом на поставки оборудования в Россию, но более значимым может оказаться простой факт ухода российский «квантовых» учёных из публичного пространства, чтобы лишний раз не «светиться».

По данным аналитиков Dsight и инвестфонда «Восход», за 2022 год в России количество заявок на изобретения в области квантовых технологий — связи, датчиков и вычислений — снизилось до 16 против 28 в 2021 году. Из этих 16 заявок 12 было подано в области квантовых коммуникаций.

До 2022 года Россия занимала одно из лидирующих мест в мире по числу разработок в области квантовых технологий. Серия санкций после февраля 2022 года сместила страну на нижние позиции, выдвинув ещё дальше вперёд США и Китай. На учёных из этих стран сейчас приходится 62 % заявок на патенты в области квантовых технологий. Возглавляют эти списки исследователи из компаний Google, Microsoft, IBM и Intel (США), а также D-Wave Systems (Канада) и Origin Quantum (Китай).

Среди подавших в России заявки лидировало представительство японской компании Canon (ушла в 2022 году). Второе место занимал университет ИТМО (Санкт-Петербург), третье — российская «КуРейт» (QRate). Кроме того, квантовыми технологиями в стране занимаются Российский квантовый центр (в числе его акционеров — Газпромбанк) и ряд вузов (МФТИ, МИСиС, ВШЭ). Все они входят в созданный в 2020 году под крылом «Росатома» консорциум «Национальная квантовая лаборатория».

Государственная поддержка квантовой сферы в России включает утверждённый в 2020 году федеральный проект «Цифровые технологии» стоимостью в 23 млрд руб.

По имеющимся данным, в 2023 году российским исследователям выдано 8 патентов по квантовым технологиям, что составляет ровно половину от патентов 2022 года. Это намекает на то, что количество заявок в 2023 году окажется на уровне 2022 года. «Иностранные заявители уже ушли из России (Canon), но отечественные исследователи получают поддержку и продолжают разработки», — отмечают аналитики.

Помимо прямых запретов на поставку в Россию оборудования для квантовых исследований, например, дефицитного криогенного оборудования, специалисты связывают сокращение числа запатентованных проектов с возросшей секретностью, поскольку многие проекты связаны с госбезопасностью.

Сюда же можно отнести публичность. «В текущей обстановке публичное распространение информации может обернуться санкционными ограничениями для компаний и вузов», — сказал научный руководитель Центра компетенций НТИ «Квантовые технологии» на базе МГУ Сергей Кулик. Учёные из России продолжают участвовать в совместных проектах с европейскими и американскими учёными, но предпочитают делать это без особенной огласки. Альтернативой этому становится более тесное сотрудничество с Китаем и Индией.

Самый быстрый китайский «серийный» квантовый компьютер в шесть раз слабее новейшей квантовой системы IBM

Китай значительно продвинулся в разработке, патентовании и реализации квантовой связи и на академических направлениях, но по практической реализации квантовых компьютеров он плетётся в хвосте у США. Новейшая китайская квантовая платформа Wukong будет в шесть раз слабее системы IBM Quantum System Two, и ликвидировать это отставание придётся годами.

 24-кубитовая система Wuyuan. Источник изображений: Origin Quantum

24-кубитовая система Wuyuan. Источник изображений: Origin Quantum

Как сообщило руководство китайской компании Origin Quantum Computing Technology, 72-кубитовая система Wukong — на сегодня самая мощная в Китае — проходит финальное тестирование и в июле поедет к заказчику. В феврале этого года компания призналась, что свою первую «серийную» квантовую систему она поставила неназванному клиенту ещё в 2021 году. На Западе аналогом квантовых систем Origin Quantum Computing можно считать квантовые компьютеры компании IBM. В каждом случае это законченные платформы, готовые для эксплуатации клиентами, а не конструктор «сделай сам».

Поскольку в конце прошлого года компания IBM анонсировала 433-кубитовые сверхпроводящие процессоры и системы Quantum System Two на их основе, китайский серийный компьютер номинально будет в шесть раз слабее американского. Это чисто условное сравнение, но примерно даёт понять степень отставания китайских разработчиков от их американских коллег. По мнению руководства Origin Quantum Computing, они отстают от IBM и западных разработчиков квантовых вычислительных платформ на 3–4 года. На преодоление этого отставания понадобятся годы напряжённой работы, даже не считая «бонуса» в виде санкционного давления.

Санкции видятся руководству китайского разработчика серьёзной помехой. Квантовые чипы требуют современных литографических техпроцессов и редких материалов. В частности, компания Origin Quantum Computing видит проблему в прекращении поставок в Китай оборудования японского производства для электроннолучевой литографии. Компания ищет и находит пути для ухода из-под санкций, например, она начала совместные исследовательские проекты с тайваньской компанией Powerchip Semiconductor Manufacturing, у которой СП Nexchip с властями Хэфэя, где располагается главный офис Origin Quantum Computing.

Компания PSMC — это третий по величине тайваньский чипмейкер. Самые тонкие его техпроцессы — это 55-нм, которые не подпадают под санкции США. Производства Powerchip могут выпускать сотни тысяч процессоров Origin Quantum Computing и закроют потребность компании в чипах. Это не позволит догнать техпроцессы и квантовые чипы Intel, но обеспечит развитие квантовой отрасли в Китае.

Компания Origin Quantum Computing образована в 2017 году двумя китайскими учёными и аккумулировала все передовые академические знания в области квантовых вычислений в стране. Её специалисты разрабатывают целый спектр квантовых процессоров, от сверхпроводящих до спиновых. Из всего этого многообразия что-то да выйдет. Также компания может похвастаться единственными практическими квантовыми компьютерами в Китае, которые можно назвать серийными.


window-new
Soft
Hard
Тренды 🔥
Пиковый онлайн Marvel Rivals в Steam превысил 644 тыс. человек — в геройском шутере стартовал первый сезон 11 ч.
Новая статья: Gamesblender № 708: анонсы Nvidia и AMD на CES 2025, новые слухи о Half-Life 3 и реплика Switch 2 21 ч.
Энтузиаст запустил современную ИИ-модель на консоли Xbox 360 20-летней давности 21 ч.
Новая статья: Legacy of Kain: Soul Reaver 1 & 2 Remastered — похититель душ вернулся, но с подвохом. Рецензия 12-01 00:10
FTC и Минюст США поддержали Илона Маска в судебной тяжбе с OpenAI 11-01 16:08
AMD скрытно показала работу FSR 4 на видеокартах Radeon RX 9070 11-01 16:04
Microsoft объявила 2025 год «годом обновления ПК с Windows 11» 11-01 15:37
TikTok может быть заблокирован в США 19 января по решению Верховного суда 11-01 06:04
Илон Маск хотел похвастаться высокоуровневым геймплеем в Path of Exile 2, но не разобрался в базовых механиках — игроки заподозрили подвох 11-01 00:12
Суд отклонил иск россиянина к Роскомнадзору по поводу замедления YouTube 11-01 00:03