Опрос
|
реклама
Быстрый переход
Банкиры испугались квантовых компьютеров — через 7 лет они смогут взломать финансовую систему
08.06.2023 [12:49],
Геннадий Детинич
В июньском докладе экспертов Банка международных расчётов (BIS, международная структура со штаб-квартирой в Базеле, Швейцария) угроза со стороны квантовых платформ обозначена главной опасностью ближайших лет. До её опасного воплощения осталось не так долго — порядка семи лет. Некоторые учреждения начали внедрять инструменты для её смягчения, но многим это ещё предстоит сделать. В России, что интересно, эта проблема не возникнет ещё сотни лет. Эксперты BIS ожидают, что полноценные квантовые компьютеры появятся в течение ближайших 10–15 лет. Они станут самой опасной угрозой для безопасности банковских данных по всему миру. На дешифровку зашифрованных традиционными методами данных с помощью RSA и ECC им понадобятся часы или даже минуты, на что традиционным компьютерам необходимы тысячи лет. Квантовые алгоритмы и особенно хорошо известный алгоритм Шора легко раскладывают (факторизуют) большие числа на простые множители и тем самым намного быстрее, чем на классическом компьютере, расшифровывают ключ или сообщение. Другое дело, что для факторизации криптографически значимых (длинных) ключей требуются квантовые системы из сотен тысяч или даже из миллионов кубитов. Маловероятно, что такие квантовые платформы появятся в обозримом будущем. И здесь подстерегает другая опасность. Чувствительные данные можно записать сейчас, а вскрыть через 10 или больше лет. К банковским транзакциям этот метод неприменим, но для целого спектра информации, включая личную и гостайну, это вполне рабочий вариант. Китай, кстати, по некоторой информации уже накапливает данные для взлома в будущем. В конце прошлого года тревожной новостью стало сообщение о возможности кратно ускорить работу алгоритма Шора. Об этом также сообщили китайские исследователи. На опытной 10-кубитовой платформе они смогли взломать 48-битный ключ RSA. Тем самым они предсказали, что использующийся сейчас массово в банковском и других секторах ключ RSA длиной 2048 бит может быть взломан системой из 372 кубитов, а это очень и очень близкое будущее. Позже специалисты Fujitsu опровергли эти опасения, показав, что для быстрого взлома RSA-2048 всё-таки нужен квантовый компьютер с не менее чем 10 тыс. кубитов и 2,25 трлн связанных с ними вентилей (логических элементов). Это явно не завтрашний и даже послезавтрашний день, но угроза от этого мягче не станет, когда её время придёт. Для смягчения квантовых угроз эксперты BIS призывают переходить на постквантовое шифрование (в простейшем случае — это увеличение разрядности RSA-ключей) и новое оборудование, в частности, на квантовую криптографию, которая устранит опасность перехвата чувствительной информации. К примеру, в рамках проекта «Скачок» (Project Leap) ранее была реализована передача платёжного сообщения в формате XML между Банком Франции и Немецким федеральным банком через квантово защищённую сеть VPN по протоколу IPsec, сообщается в докладе, который цитирует издание «Ведомости». Также в BIS утверждают, что большая часть центральных банков в мире уже имеют возможности по введению постквантовых алгоритмов, хотя им требуются дополнительные оценки, чтобы понять, какие системы могут быть наиболее уязвимыми к угрозам хакерских атак с квантовых устройств. Это означает, что к 2025 году в большинстве центробанков наравне с обычными алгоритмами шифрования будут активно использоваться постквантовые алгоритмы. Бизнес-консультант по информационной безопасности Positive Technologies Алексей Лукацкий напомнил, что на одной из прошлых конференций по кибербезопасности RSA Conference прозвучал прогноз о начале взлома обычных ключей квантовыми системами уже с 2027 года. Поэтому множество международных компаний давно и эффективно работают над алгоритмами постквантовой криптографии. Там совсем новая математика, и она рассчитана на «умное» противодействие квантовым алгоритмам взлома. По оценкам ФСБ, на которые также ссылается специалист Positive Technologies, российские криптографические алгоритмы в обозримом будущем неподвластны квантовым компьютерам, и пройдёт как минимум сотни лет, прежде чем риски станут актуальными. В то же время самыми уязвимыми к квантовому взлому остаются алгоритмы передачи данных между операторами и ЦОД, системы электронного документооборота, информационно-аналитические системы, онлайн-банкинг и платёжные терминалы, а также инфраструктура электронных подписей. По оценкам BCG 2022 года, вероятность осуществления хакерской атаки на финансовый институт примерно в 300 раз выше, чем на организации другого типа, а данные S&P Global говорят о том, что шансы атак растут вместе с размерами финансовой организации. Прямыми убытками чреват даже сам факт взлома без кражи данных или иных потерь, что подорвёт доверие клиентов к банковским услугам и механизмам. Так, в марте этого года S&P провело моделирование успешной атаки на крупный европейский банк (с доходом более 1 млрд евро). В худшем случае это привело бы к прямым убыткам в размере около 7 % капитала без учёта репутационных потерь и недополученной в будущем прибыли. Что будет происходить в случае настоящей атаки, можно только догадываться. Иногда реальность в своём воплощении превосходит даже худшие воображаемые кошмары. На квантовом компьютере запустили имитацию мыслительной деятельности человека
07.06.2023 [12:47],
Геннадий Детинич
Разработчик квантовых компьютеров — американская компания IonQ — сообщил о первых опытах имитации мыслительной деятельности человека на квантовых схемах. Задачей эксперимента стало исследование принципиальной возможности запустить на квантовом «железе» модели познания и принятия решений человеком. Первые результаты обнадёживают, о чём компания сообщила в научной публикации. Исследователи напомнили, что психологи системно свыше 60 лет пытаются проникнуть в тайну познания человеком себя и окружения. Ряд аспектов указывают на то, что путь мысли человека в чём-то (а иногда очень сильно) подчиняется законам квантовой вероятности. Было бы неправильно упустить этот момент и не попытаться запустить выведенные психологами модели принятия решений на квантовых компьютерах. Если правильно подобрать компоненты, это приведёт к появлению невероятно мощных по силе инструментов для предсказаний тех или иных событий, как и создаст предпосылки для возникновения всезнающих управленческих платформ. Вместе с международной группой учёных специалисты IonQ смогли создать квантовые схемы, регистры и гейты, которые позволили запустить имитацию мыслительной деятельности человека. Фактически в кубитах были закодированы человеческие ментальные состояния, что позволило провести с ними манипуляции и получить определённый результат. Это пока первые шаги. Но завести они могут очень далеко, и даже нельзя сказать, в хорошую или плохую сторону. Оружием может стать любой рабочий инструмент. А новый инструмент может обернуться против всего человечества разом. «Потенциальное влияние квантовых компьютеров, способных эмулировать процессы принятия решений человеком, невозможно переоценить, поскольку такое будущее становится всё ближе к реальности, — сказал Питер Чапман (Peter Chapman), генеральный директор и президент IonQ. — Этот прорыв несёт в себе огромный потенциал для таких областей, как генеративный ИИ, позволяя создавать сложные и тонкие системы искусственного интеллекта, способные генерировать высокореалистичные и творческие результаты. Благодаря беспрецедентной вычислительной мощности квантовых вычислений, сегодняшнее исследование закладывает важнейшую основу для развития сложной сети корреляций, которая станет топливом для будущих инноваций». Но самое интересное в том, что даже человек может мыслить по законам квантовой физики. Последние исследования показывают, что у нас у каждого в голове может быть маленький квантовый компьютер, хотя это уже другая история. Глава IBM считает, что квантовым компьютерам найдётся коммерческое применение уже через пять лет
28.05.2023 [06:57],
Алексей Разин
Генеральный директор IBM Арвинд Кришна (Arvind Krishna) в своём интервью ресурсу Nikkei Asian Review коснулся разных тем, но наиболее важным для отрасли можно считать его прогноз относительно перспектив развития квантовых вычислений. По его словам, уже через три–пять лет квантовым компьютерам найдётся коммерческое применение. Для этого достаточно квантовых компьютеров, предлагающих от 4000 до 10 000 кубит. Данное заявление глава IBM сделал в контексте анонса сотрудничества с Токийским университетом и Университетом Чикаго в сфере создания квантового компьютера с 100 000 кубит через десять лет. Этот проект подразумевает инвестиции со стороны IBM в сумме $100 млн. Глава компании убеждён, что в сфере квантовых вычислений партнёры по проекту смогут продвигаться шаг за шагом до тех пор, пока соответствующие системы не позволят решать проблемы, которые для обычных суперкомпьютеров слишком сложны или затратны. Возможностей квантовых компьютеров с 4000 или 10 000 кубит будет достаточно, чтобы заняться решением проблем в коммерческом сегменте рынка. В наличии в Японии необходимых специалистов по квантовым вычислениям Арвинд Кришна не сомневается. По его словам, лишь немногие осознают, насколько далеко японские специалисты продвинулись в этой области. Глава IBM также считает, что инициатива консорциума Rapidus по освоению производства 2-нм продукции на территории Японии к 2027 году вполне может увенчаться успехом, поскольку во всём мире сейчас немало японских инженеров, которые являются экспертами в области литографии, и реализация такого проекта позволит им вернуться в Японию и работать над передовой инициативой. «Япония является одним из немногих мест на планете, где правительство США разрешило бы нам осваивать эту очень продвинутую 2-нм технологию, поскольку между странами имеются договорённости в сфере обороны», — пояснил Кришна. По его словам, успех инициативы Rapidus позволит IBM расширить сотрудничество с японскими партнёрами в будущем. Учёные создали стабильный гибрид сверхпроводящего и спинового кубита, улучшив спиновый кубит Андреева
23.05.2023 [11:29],
Геннадий Детинич
Идеальной платформы для квантовых компьютеров пока нет. Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления. Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других. Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления. Как взять одни свойства перспективных кубитов и отбросить другие? Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований (TNO). В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы. «В нашем эксперименте нам удалось напрямую манипулировать спином кубита с помощью микроволнового сигнала, — сказал Арно Баргербос (Arno Bargerbos), один из авторов работы. — Мы добились очень высоких "частот Раби", что является показателем того, насколько быстро сигнал может управлять кубитом». Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева. В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона. Они же являются родительскими состояниями майорановских мод. Джозефсоновские переходы или контакты способны также захватывать сверхпроводящие квазичастицы со своими спинами. Тем самым появляется связь между сверхтоками и спинами. Сверхпроводящим током можно изменять направление спина, а детектирование спина может регистрировать сверхпроводящие токи. «Наконец, — продолжает Баргербос, — мы продемонстрировали первую прямую сильную связь между спиновым кубитом и сверхпроводящим кубитом, что означает, что мы смогли заставить эти два кубита взаимодействовать контролируемым образом. Это говорит о том, что "спиновый кубит Андреева" может стать ключевым элементом для соединения квантовых процессоров, основанных на радикально различных технологиях кубитов: полупроводниковых спиновых кубитах и сверхпроводящих кубитах». Квантовый компьютер D-Wave с 5000 кубитов действительно работает — он решил неподъёмную для обычных систем задачу со спиновым стеклом
20.04.2023 [11:20],
Геннадий Детинич
Учёные Бостонского университета и сотрудники канадской D-Wave в журнале Nature опубликовали статью, которая убедительно доказывает практическую ценность квантовых компьютеров компании. Коммерческая система D-Wave Advantage из 5000 кубитов обеспечила симуляцию особого состояния материи — спинового стекла. Для классических компьютеров такие задачи неподъёмные, а учёные мечтают выйти за пределы известного. Квантовые системы им это дают. Компания D-Wave выпускает особый класс квантовых компьютеров. Кубиты в системах D-Wave совсем не такие, как в системах Google, IBM или у российских платформ. Основная масса разработчиков пытается создавать многокубитные системы, в которых квантовая запутанность реализуется, скажем так, по-честному, когда запутанные кубиты имеют ту или иную квантовую величину (характеристику) в одинаковом состоянии. Пока кубиты когерентны (согласованы) проводятся вычисления или, точнее, симуляции. Это очень хрупкое состояние и длится оно единицы миллисекунд. Много кубитов таким образом не свяжешь. Сегодня это от 20 до 50 кубитов в системах IBM. Канадцы же ещё на старте в 2011 году представили 128-кубитовую платформу и сегодня предлагают уже 5000-кубитовую. Им мало кто верил, пока в 2012 году систему D-Wave не купила Lockheed Martin. В 2013 году вышла первая статья, доказывающая работу квантовых платформ компании, и вскоре их системы были куплены Google и NASA. В платформах D-Wave когерентное состояние кубитов поддерживается иным образом, а именно с помощью известного явления квантового туннелирования. Вместо того, чтобы удерживать запутанность кубитов платформа D-Wave приводится в состояние когерентного (согласованного) возбуждения всех кубитов, после чего она оставляется в покое и кубиты естественным образом переходят в состояния энергетического минимума. Начальное состояние возбуждения программируется, поэтому в состоянии установившегося покоя (в процессе так называемого отжига) итоговое минимальное энергетическое (физическое) состояние системы — это готовый ответ на поставленную задачу. Фактически — это решение задач той или иной оптимизации. В свежем исследовании учёные из Бостона и специалисты D-Wave показали, что производительность её квантового компьютера Advantage на 5000 кубитов значительно выше, чем у классических систем при решении задач 3D оптимизации спинового стекла — трудноразрешимого класса задач оптимизации. Эта работа также представляет собой крупнейшее программируемое квантовое моделирование, о котором сообщалось до сих пор. В сентябре прошлого года подобные вычисления были проведены на 2000-кубитовой системе D-Wave. Повторение работы в новом масштабе доказывает возможность трансляции когерентных процессов на расширенные процессы при решении задач оптимизации. «Это исследование знаменует собой значительное достижение для квантовой технологии, поскольку демонстрирует вычислительное преимущество перед классическими подходами для трудноразрешимого класса задач оптимизации, — сказал д-р Алан Барац (Alan Baratz), генеральный директор D-Wave. — Для тех, кто ищет доказательства непревзойденной производительности квантового отжига, эта работа предлагает окончательное доказательство». Российские учёные доказали превосходство отечественных многоуровневых кубитов над обычными
07.04.2023 [21:52],
Геннадий Детинич
В статье в журнале Entropy группа российских учёных из НИТУ МИСИС и Российского квантового центра привели примеры квантовых вычислений на кудитах, которые резко выигрывают на фоне кубитов. Кудиты способны на порядок и даже больше улучшить качество квантовых алгоритмов. Всё что нужно для этого — это новая математика, с чем в российской науке умеют работать. Разработчики квантовых систем в лице Google, IBM и других компаний пошли по проторенному пути, который гарантирует повышение производительности за счёт обычного увеличения числа кубитов — наименьшей единицы информации и элементарного вычислительного элемента квантового компьютера. У России, похоже, другой путь — это многоуровневые кубиты или кудиты. Математика сложнее, но зато можно запускать квантовые алгоритмы на намного меньшем количестве квантовых элементов. Это как с памятью 3D NAND — чем сложнее структура, тем больше бит можно записать в ячейку, и это работает! В качестве квантовых вычислительных элементов в России выбрали ионы (атомы). Ионы могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трёх (кутриты), четырёх (кукварты), пяти (куквинты) и более состояниях. На днях такая платформа не просто была показана в работе, а была запущена для вычислений через облачный интерфейс. Как и с памятью 3D NAND, дополнительные состояния кудитов позволяют плотнее кодировать данные в физических носителях, а это прямая возможность реализовывать всё более сложные и комплексные квантовые алгоритмы без усложнения вычислительной архитектуры. Это ведёт к возрастанию мощности квантового процессора «на ровном месте» со значительным ускорением выполнения операций. Так, один куквинт заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. «Куквинты хороши тем, что их пространство можно рассматривать как пространство двух кубитов с общим дополнительным уровнем. Такое рассмотрение помогает одновременно и сократить число физических носителей информации [кубитов], и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей или как их еще называют — гейтов — сложных логических операций с кубитами. Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, т.е. задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСИС Алексей Федоров. В конкретном примере учёные представили эффективную модель декомпозиции обобщенного вентиля Тоффоли (обобщенную на n кубитов версию вентиля контролируемое НЕ). Используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор. Оказалось, что по сравнению с кубитами реализация алгоритма на куквинтах при большом числе (>5) задействованных в алгоритме кубитов требует на порядок меньше двухчастичных гейтов. В частности, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Выигрыш колоссальный и это можно с успехом развивать и применять не только к кубитам на ионах, но также на других физических носителях, например, на сверхпроводящих или спиновых кубитах. Учёные предложили формулу для борьбы с шумом в квантовых вычислениях
07.04.2023 [14:21],
Геннадий Детинич
Не секрет, что квантовые вычисления крайне зависимы от состояния среды. Квантовые состояния кубитов страдают от вибраций, космических частиц, теплового движения молекул, электромагнитных полей и других потенциальных воздействий. Точно рассчитать уровень воздействия шума на кубиты — это значит оптимально настроить систему на работу, к чему приблизились учёные из США и Нидерландов. Исследователи из Инженерного колледжа Корнеллского университета и Университета Амстердама вывели формулу, которая предсказывает влияние шума окружающей среды на квантовую информацию — это крайне важное достижение для проектирования и создания квантовых компьютеров, способных работать в нашем несовершенном мире. В частности, шум непредсказуемым образом изменяет фазу различных составляющих волновой функции. Этот процесс изменения фазы квантовой системы называется дефазировкой, и он может негативно сказаться на квантовых вычислениях. Новое исследование точно определяет, сколько избыточности необходимо добавить в квантовое сообщение, чтобы защитить его от дефазинга. Фактически учёные могут теперь количественно оценить влияние шума на квантовые вычисления и разработать методы преодоления этого влияния. Детально процесс проанализирован в статье в журнале Nature Photonics. В целом работа посвящена передаче квантовой информации по оптическим каналам связи, но может быть расширена до исследования других методов работы с квантовой информацией. В России впервые организовали доступ к квантовому компьютеру через облако
05.04.2023 [13:55],
Геннадий Детинич
Сегодня группа физиков из Российского квантового центра и ФИАН им. П. Н. Лебедева РАН продемонстрировала возможность удаленного подключения к отечественному ионному квантовому компьютеру. С помощью web-интерфейса с обычного ПК были запущены ключевые квантовые алгоритмы. Удалённая квантовая система выполнила расчёт и вернула ответ, что обещает в скором будущем реализацию множества независимых проектов с использованием квантовых систем. Важно сразу отметить, что российский квантовый компьютер сильно отличается от платформ IBM, Google и похожих на сверхпроводящих кубитах. В основе российской квантовой платформы лежат многоуровневые кубиты или точнее кудиты на ловушках ионов. Проект стартовал в 2020 году при поддержке Фонда НТИ и Минцифры. В 2021 году был представлен четырёхкубитовый прототип, а ещё год спустя — пятикубитовая или, точнее, пятикудитовая платформа. Ку(d)ит — это кубит с суперпозицией из более чем двух логических состояний (d). Одновременно это может быть не только 0 и 1 как для классических квантовых платформ, а целый спектр значений, благо квантовая теория предполагает равновероятностное существование всех значений между 0 и 1. Тем самым кудит как ячейка памяти 3D NAND может быть двух-, трёх- и многоуровневым, что повышает разрядность каждого вычислительного элемента. При должной чувствительности 5-кудитовый российский квантовый компьютер может превзойти по мощности десятикратно и более превосходящий его квантовый компьютер на кубитах. Разработка аппаратной платформы, что важно, непрерывно сопровождалась созданием пакета программного обеспечения, чем все эти два года занимались специалисты Сколтеха и ФТИАН им. К. А. Валиева РАН. «Разработанный в рамках проекта ЛИЦ программно-аппаратный комплекс уникален для России — это единственный процессор с настроенным облачным интерфейсом, который способен оперировать кудитным регистром. Результат проекта представляет высокий научный потенциал для развития российской отрасли квантовых вычислений», — отметил генеральный директор Фонда НТИ Вадим Медведев. В ходе демонстрации возможностей интерфейса группе экспертов Фонда НТИ был проведён запуск ряда критически важных квантовых алгоритмов. В частности, учёные удалённо запустили на процессоре алгоритм Гровера, используемый для поиска значения по неупорядоченной базе данных, а также алгоритм Бернштейна-Вазирани, применяемый в решении задачи по нахождению n-битного числа. Точность однокубитных операций достигла 90 %, а двухкубитных — 80 %. На новом этапе команда начала работу над тестированием нового класса вариационных квантовых алгоритмов, которые представляют большой интерес для прототипирования прикладных задач из области химии, оптимизации и машинного обучения. О готовности предоставить платформу в открытый доступ пока не сообщается. Учёные научились генерировать случайные числа с помощью фундаментальных основ мироздания
01.04.2023 [14:08],
Геннадий Детинич
Любые кажущиеся нам случайными события далеко не случайны. Мы не можем на них повлиять, но способны проанализировать и найти первопричину того или иного происшествия. В обычной жизни это мало на что влияет, но для ряда приложений, например, в криптографии, случайности играют определяющую роль. Если они поддаются анализу и предсказанию — метод шифровки можно выбросить в мусорное ведро. Но где искать настоящий и непредсказуемый случай? Настоящая случайность всегда под рукой, и она лежит в основе нашего мироздания. Согласно квантовой теории поля, вакуум постоянно рождает случайные пары частиц и античастиц. Это по-настоящему случайные события, которые подчиняются принципу неопределённости Гейзенберга. Это изначально вероятностные объекты, все свойства которых мы не можем одновременно измерить и предсказать. Это та монетка, которую как ни подбрасывай, никакой статистически значимой вероятности выпадения мы никогда не создадим. Использовать рождение виртуальных частиц в «квантовой пене» смогли учёные из институтов Бельгии, Дании и Италии. Они создали сравнительно компактный прибор для генерации каждую секунду 100 Гбит случайных данных. Каждый бит в этом потоке — это случайная виртуальная частица квантового поля. Появление виртуальных частиц давно фиксируется тем или иным способом. Они проявляются в нюансах работы лазеров и в рассеивании их света на разных химических соединениях. Учёные давно ищут надёжный метод фиксации виртуальных частиц без сложного и громоздкого оборудования. В повседневной жизни такое нельзя использовать. В новой работе в журнале PRX Quantum международная группа учёных предложила устройство на базе интегрированного гомодинного детектора, который обеспечивал детектирование виртуальных частиц в несколько раз быстрее аналогов и делал это без значительного количества дополнительного оборудования. Изюминкой разработки стало решение по снижению помех. Оно детектировало источник потенциальных помех и учитывало его влияние на датчик виртуальных частиц, чем резко повысило чувствительность для детектирования квантовых явлений. В итоге получилась платформа на чипе, способная надёжно выдавать случайные числа для всех нужд шифрования и не только. Найдётся ли этому немедленно практическое применение, учёные предсказать не берутся, но учитывая растущие опасения взлома шифровок квантовыми платформами, потребность в настоящей случайности давно созрела. В Японии запустили первый квантовый компьютер местного производства — к нему сразу возникла очередь
29.03.2023 [15:35],
Геннадий Детинич
Агентство Nikkei сообщило, что в понедельник в Японии запустили первый квантовый компьютер отечественной разработки. Установку спроектировали и построили институт RIKEN и компания Fujitsu. Квантовая система может оперировать 64 кубитами, что намного больше ранее размещённого в Японии квантового компьютера IBM на 27 кубитах. Желающих воспользоваться системой через облачный доступ оказалось так много, что пришлось вводить очередь. Японские компании сильно отстали от США и даже от Китая в разработке квантовых технологий. Несколько лет назад правительство Японии предприняло ряд мер организационного порядка и немного помогло с финансированием, чтобы процесс начал набирать силу. Компания Fujitsu и институт RIKEN были среди тех, кто начал совместную работу над принципиально новыми вычислительными системами. Они пообещали и достигли первого этапа в работе — представили отечественную 64-кубитовую вычислительную платформу. В 2025 году партнёры обещают запустить 100-кубитовый вычислитель, а ещё год спустя — 1000-кубитовый. «Крупные зарубежные игроки, такие как Google, могут казаться лидерами в этой области, но у нас есть место для конкуренции», — сказал Синтаро Сато (Shintaro Sato), глава квантовой лаборатории Fujitsu. В то же время нигде в мире пока нет ясного понимания, как и для каких задач лучше всего использовать квантовые вычислители. RIKEN и Fujitsu также будут прорабатывать эти вопросы. В частности, RIKEN займётся прикладной частью вместе с японскими предприятиями и университетами, а Fujitsu будет изучать возможные приложения совместно с Fujifilm и Tokyo Electron. Распространено мнение, что квантовые вычисления могут ускорить разработку новых материалов в десять раз, в том числе в областях, имеющих решающее значение для декарбонизации, таких как батареи для электромобилей и искусственный фотосинтез. Несколько лет назад пионером в исследованиях по использованию квантовых вычислений для разработки материалов для батарей стала Mitsubishi Chemical Group. Как и компании Toyota Motor и Sony Group, тоже заинтересованные в разработке новых технологий и материалов, Mitsubishi воспользовалась услугами 27-кубитового компьютера IBM, развёрнутого в 2021 году в Кавасаки. Можно не сомневаться, что более мощная отечественная квантовая система в полной мере будут востребована этими и другими компаниями. Это будущее, которое уже наступило. Упускать из рук такое нельзя. NVIDIA представила DGX Quantum — систему на GPU, которая объединит классические и квантовые компьютеры
22.03.2023 [11:35],
Геннадий Детинич
NVIDIA сообщила о выпуске первой в мире системы на базе GPU с блоком сопряжения с квантовыми вычислителями. Система DGX Quantum обеспечит гибридные квантово-классические вычисления на основе программной платформы CUDA Quantum с открытым кодом. Фактически компания представила простой и понятный для использования программно-аппаратный интерфейс, объединяющий классические и квантовые компьютеры. Работать с кубитами станет легче. Блок управления кубитами представила молодая израильская компания Quantum Machines. На изображении его нетрудно обнаружить по двум рядам коаксиальных разъёмов. Условно блок можно представить как контроллер кубитов. В идеальном случае он должен устанавливаться в один блок с кубитами, которыми он будет управлять по командам от GPU-ускорителя, но пока это невозможно осуществить — электроника просто не выдерживает криогенных температур. Значительным достоинством блока управления Quantum Machines OPX+ является его универсальность. Блок адаптирует сигнальную структуру для работы (чтения, записи, калибровки) с очень широким спектром кубитов — от криогенных, до нейтральных атомов, вакансий (дефектов) в кристаллах, ионных ловушек и других. Решение поистине универсальное и позволит избежать проблем специалистам в процессе создания гибридных вычислителей. Со стороны NVIDIA в систему DGX Quantum вложено новейшее решение Grace Hopper в виде сочетания Arm-процессора и ускорителя вычислений H100. Вместе с Quantum Machines OPX+ платформа обеспечит запуск гибридных ресурсоёмких алгоритмов, обещая низкие задержки и высочайшую производительность там, где классические системы спасуют. Вишенкой на торте можно считать программную платформу CUDA Quantum. Она позволит людям разбираться с гибридными и квантовыми алгоритмами, не имея за плечами степени по квантовой механике. Платформу уже пообещали взять на вооружение компании Anyon Systems, Atom Computing, IonQ, ORCA Computing, Oxford Quantum Circuits и QuEra, а также компании по разработке квантового ПО Agnostiq и QMware и суперкомпьютерные центры Национальный институт передовой промышленной науки и технологии, Центр ИТ науки (CSC) и Национальный центр суперкомпьютерных приложений (NCSA). «Мы движемся к новой эре квантовых вычислений, которые доступны большему числу исследователей, чем когда-либо, — сказал Итамар Сиван (Itamar Sivan), соучредитель и генеральный директор Quantum Machines. — Наше сотрудничество с NVIDIA по системе DGX Quantum позволит новому поколению новаторов решить некоторые из величайших мировых проблем». Учёные МФТИ первыми в России запустили квантовую нейросеть — точность решения задач превысила 90 %
17.03.2023 [18:35],
Геннадий Детинич
Сообщается, что молодые ученые МФТИ первыми в России экспериментально реализовали работающий алгоритм квантового обучения в цепочке сверхпроводящих кубитов. Алгоритмы машинного обучения — это непросто само по себе, а их запуск на кубитах — это совсем иной уровень проблематики. Тем не менее, квантовая нейросеть показала практическую пригодность к решению сложных классических задач с высокой точностью, что также подтолкнёт к покорению новых вершин. «Мы нашли удачную структуру квантовой цепочки и алгоритм обучения, который позволяет нам достичь точности 94 % для стандартных задач классификации с несколькими метками и точности 90 % при распознавании рукописных десятичных цифр. Точность и стабильность алгоритма подтверждаются методом перекрестной проверки. Квантовая модель достаточно быстро обучается благодаря возможности эффективного вычисления градиента с использованием необычных свойств квантовых операций», — рассказал Алексей Толстобров (выше на фото), соавтор исследования, сотрудник лаборатории искусственных квантовых систем МФТИ. Мы довольно давно слышим о машинном обучении и к настоящему времени в этой сфере достигнуты впечатляющие результаты. Взять хотя бы ставший популярным ИИ-бот ChatGPT на большой языковой модели GPT. Но у классических компьютеров (суперкомпьютеров) есть свои и довольно ощутимые пределы, преодолевать которые индустрия намеревается с помощью квантовых систем. Работа российских учёных показывает, что квантовые вычислители или, вернее, симуляторы вполне способны создавать обучаемые нейросети и выполнять алгоритмы, что когда-нибудь позволит сделать прорыв в сфере машинного обучения. Забавно, но сегодня всё больше причин считать, что вычислительная работа головного мозга в своей основе имеет квантовые явления. Может так статься, что в будущем настоящий ИИ будет построен только на квантовой самообучающейся нейросети, что, как считают специалисты, станет концом человечества, но это уже другая история. Возвращаясь к работе команды физиков МФТИ, уточним, что она провела цикл экспериментов с моделью гибридного классификатора, работу которой ускорил квантовый симулятор. Симулятор же представлял собой цепочку из нескольких сверхпроводящих кубитов. Модель была обучена решать задачи классификации и распознавания изображений. В частности, решались задачи чётности, обнаружения меток рака молочной железы («есть/нет») и типологии различных вин (многозначная классификация по десятку параметров). Помимо этого, было продемонстрировано решение задачи распознавания рукописных изображений цифр. На следующем этапе учёные увеличат количество кубитов в квантовом симуляторе, что даст возможность решать более сложные задачи классификации, а также протестируют способность системы решать задачи регрессии и, наконец, попытаются перейти от классических данных к квантовым. Учёные предложили удивительно простое решение для управления кремниевыми спиновыми кубитами
07.03.2023 [21:29],
Геннадий Детинич
Специалисты компании HRL Laboratories опубликовали в журнале Nature статью, в которой рассказали об эксперименте по управлению кремниевыми спиновыми кубитами. Решение оказалось удивительно удобным и способным подтолкнуть науку вперёд к созданию универсального квантового компьютера. Это не готовая к внедрению разработка, но вполне чёткий план действий, каждый этап реализации которого сегодня полностью осуществим. Большинство предложенных сегодня схем воздействии на кремниевые спиновые кубиты и другие варианты кубитов опираются на микроволновое излучение. Отправка радиосигнала на резонансной частоте меняет квантовые состояние кубитов либо производит их считывание. Было бы гораздо удобнее, если бы непосредственно влияющие на кубиты управляющие сигналы посылались как в современной электронике — импульсами напряжения. Именно подобную реализацию предложили исследователи из HRL Laboratories. И не просто предложили, а создали макет установки и оценили её способность управлять закодированными кубитами — спинами кремниевых кубитов. Решение представляет собой изготовленные на обычном фабричном техпроцессе квантовые точки, к которым подведены электроды. Квантовая точка — это соединение кремния и кремния-германия (Si/SiGe). Каждая квантовая точка захватывает электрон, направление спина которого кодируется напряжением на электроде. Учёные показали, что точно выверенное напряжение с высокой частотой, подающееся на электроды между квантовыми точками (кубитами) позволяет влиять на направление закодированных спинов и эти изменения можно фиксировать. Фактически учёные показали устройство логики для квантовых вычислений, хотя до работающих алгоритмов всё ещё далеко. Тем не менее, предложенное решение показало хорошее время когерентности и устойчивость ко многим внешним воздействиям и целому списку ошибок, характерных, в частности, для метода микроволнового воздействия на кубиты. В отличие от всех других популярных кубитов, уверены разработчики, в их схеме нет непреодолимых барьеров — всё постепенно решается, тогда как у других кубитов есть, как минимум, какое-то одно несокрушимое пока препятствие. «Трудно определить лучшую технологию создания кубитов, но я думаю, что кремниевые кубиты с обменом являются, по крайней мере, наиболее сбалансированными, — сказал Таддеус Лэдд (Thaddeus Ladd), руководитель группы HRL и соавтор статьи. — Остаются реальные задачи по улучшению ошибок, масштаба, скорости, однородности, перекрестных помех и других аспектов, но ни один из них не требует чуда. Для многих других видов кубитов есть, по крайней мере, один аспект, который все еще выглядит очень, очень трудным». Google придумала, как избавиться от ошибок в квантовых компьютерах, но IBM в методе усомнилась
23.02.2023 [13:16],
Геннадий Детинич
Исследователи Google опубликовали в Nature статью, в которой сообщили о прорыве в исправлении ошибок в вычислениях квантовых компьютеров. В опытах на реальной системе из 72 кубитов был получен результат, теоретическое масштабирование которого на систему из миллиона кубитов обещает добиться безошибочных расчетов любой сложности. Фактически команда Google обосновала возможность практического использования квантовых компьютеров. Ранее Google уже садилась в лужу с заявлениями о достижениях в области квантовых вычислений. В 2019 году она заявила, что первой добилась квантового превосходства — за считанные минуты смогла решить на квантовой системе задачу, которую обычный суперкомпьютер IBM решал бы тысячи лет. Упоминание системы IBM было явно неуместно, поскольку эта компания посчитала делом чести защитить себя и быстро опровергла заявление Google. Поэтому сегодня компания повела себя осмотрительно и сообщила о новом прорыве, как о вероятном, но не обязательно достижимом результате. Итак, о каком прорыве говорит Google? Как известно, квантовые состояния или значения кубитов — квантовых битов — очень неустойчивы и «пугливы». Любой шум от вибраций до тепловых колебаний, радиосигналов и прилетающих из космоса частиц способен разрушить эти состояния. Криогенное охлаждение, экраны, бетонные стены и полы могут продлить устойчивость, но она всё равно очень и очень непродолжительная — не дольше 10-15 мкс. Выход тут только один — корректировать ошибки (потери стабильности и, как следствие, данных) по мере их возникновения хотя бы до завершения работы вычислительных алгоритмов. Наиболее перспективным сегодня считается коррекция ошибок с помощью поверхностных кодов, когда создаётся двумерная матрица из физических кубитов данных и связанных с ними измерительных кубитов. Измерительных кубитов всегда на один меньше. На них переносятся состояния физических кубитов данных, что позволяет корректировать возникающие в этих состояниях ошибки. Например, для матрицы 3 × 3 будет 9 кубитов данных и 8 измерительных кубитов. Матрица 5 × 5 будет содержать 25 кубитов данных и 24 измерительных кубита для коррекции ошибок. В каждом случае комбинация кубитов данных и измерительных кубитов будет представлять один логический кубит с коррекцией ошибок. В первом случае примера один логический кубит потребует 17 физических кубитов, а во втором — 49 физических кубитов. Свежая работа команды Google показала, что чем крупнее массив физических кубитов в каждом логическом кубите, тем меньше частота возникновения ошибок при расчетах. Ранее Google уже сообщала о таких выводах и теперь она на практической системе показала, что в случае матрицы 3 × 3 частота возникновения ошибок составляет 3,028 %, а в случае матрицы 5 × 5 она меньше и равна 2,914 %. Из этого учёные делают вывод, что чем больше физических кубитов в каждом логическом кубите, тем меньше вероятность ошибки. Согласно подсчётам Google, для построения полностью безошибочного квантового компьютера необходимо создавать логические кубиты из тысячи физических кубитов для каждого. Так, практическая ценность ожидается при достижении квантового компьютера объёмом в 1000 логических кубитов, для чего потребуется «всего» один миллион физических кубитов. И это не мечта о далёком будущем, уверены в Google. Это план движения к цели. Впрочем, скептики из той же IBM напоминают, что при масштабировании любых систем ошибки каждой подсистемы имеют тенденцию накапливаться и не факт, что в случае системы из миллиона кубитов общие ошибки системы не начнут превалировать над способностью платформы корректировать ошибки расчётов. Британские учёные стали ближе к практическим квантовым компьютерам — они «телепортировали» кубиты между процессорами
09.02.2023 [19:10],
Геннадий Детинич
Хотя экспериментальные квантовые компьютеры приближаются к сотне кубитов, практическая польза от таких систем ожидается лишь после появления устройств из десятков или сотен тысяч кубитов, а то и миллионов. В конечном счёте, всё упирается в масштабирование, а с этим всё довольно плохо. Одно из решений этой проблемы видят британские учёные — это модульный подход, когда квантовые чипы как частички пазла будут простым образом соединяться друг с другом. На днях в издании Nature Communications группа британских учёных из Университета Сассекса и выделенной из него компании Universal Quantum сообщила о работе, в ходе которой впервые была показана возможность прямой передачи кубитов (квантовых состояний) между двумя независимыми квантовыми чипами и сделано это с рекордной скоростью и точностью. Причём скорость и точность передачи оказались на порядки выше предыдущих опытов, что даёт надежду на приближение масштабных квантовых вычислителей или симуляторов. Решение обещает реализовать модульный подход в масштабировании квантовых платформ. Отдельные квантовые чипы устанавливаются один рядом с другим, но не имеют прямых соединений друг с другом. Это чрезвычайно упрощает как архитектуру, так и реализацию масштабных решений. Кубиты едва ли не телепортируются сквозь воздушный зазор между одним чипом и другим. Во всяком случае удалось доказать, что квантовые состояния не разрушаются во время такой передачи и полностью сохраняются, включая загадочную суперпозицию, когда значение кубита равновероятно может быть любым от 0 до 1. В своём эксперименте исследователи оперировали кубитами на ионах в ловушках. Ионы хорошие кандидаты в кубиты, поскольку время когерентности (сохранения квантовых состояний для проведения расчётов или симуляций) у них одно из самых длительных среди других кандидатов в кубиты. На этом принципе строятся одни из мощнейших на сегодня квантовые системы компании Honeywell и проблема с масштабированием у них стоит очень остро. Количество ловушек для ионов на чипе физически ограничено и без модульного подхода говорить о создании многокубитовых платформ просто не приходится. Британская разработка оказалась достаточно перспективной, чтобы компания Universal Quantum получила 67 млн евро от Немецкого аэрокосмического центра (DLR) на создание двух квантовых компьютеров, где они будут использовать представленную технологию. Это крупнейшая сумма, выданная за государственный счёт в виде разовой выплаты какой-либо «квантовой» компании, что даёт надежду на значительную практическую ценность разработки. |