Сегодня 06 октября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → навигация
Быстрый переход

Лунный GPS может появиться уже к концу десятилетия

Американское NASA при поддержке европейских и японских партнёров разрабатывает концепции навигационной системы для Луны, которая может быть развёрнута уже в конце 2020-х годов. В июле Китайское национальное космическое управление (CNSA) представило свои планы по развёртыванию группировки из 21 спутника связи и навигации для лунных миссий.

 Источник изображения: pixabay.com

Источник изображения: pixabay.com

Эти проекты появились потому, что в ближайшие годы планируется начало полномасштабной деятельности и исследований на Луне — это потребует сложной логистики, включая системы позиционирования, навигации и синхронизации, которые активно используются в земной инфраструктуре. NASA в рамках программы Artemis рассчитывает произвести высадку астронавтов в области Южного полюса на Луне, что потребует надёжных линий связи и точных служб определения местоположения. Китай также намеревается до конца десятилетия произвести высадку на Луне, а множество правительственных и частных организаций в ближайшем будущем отправит туда исследовательские аппараты.

Коммерческий космический сектор изучает возможности, которые сулит молодая лунная экономика: добыча ресурсов, производство в условиях низкой гравитации, научные исследования и туризм. Это потребует надёжной спутниковой системы, которая подходит для Луны — по крайней мерее отдельных её регионов. И если на начальном этапе активная работа будет вестись в области Южного полюса, то навигация и связь должны быть обеспечены в этом регионе, но в долгосрочной перспективе потребуется охват всего спутника Земли.

Для реализации этих проектов потребуется ответить на несколько сложных вопросов. К примеру, вопрос времени. Учёт лунных миссий ведётся, исходя из циклов лунных ночи и дня, которые длятся по две земных недели; но пока на Луне отсутствует стандартная шкала, подобная системе всемирного координированного времени, которая является исходной для всех земных часов.

 Источник изображения: David / pixabay.com

Источник изображения: David / pixabay.com

Благодаря точному измерению времени на свет появились земные системы спутниковой навигации: американская GPS, китайская BeiDou, российская ГЛОНАСС и европейская Galileo. Спутники всех этих группировок оборудуются атомными часами, которые помогают определять время с точностью до нескольких миллиардных долей секунды. Местоположения на Земле рассчитываются на основе времени прохождения спутниковых сигналов до наземных приёмников — сдвиг на одну наносекунду даёт погрешность на 30 см. Поэтому точное определение времени важно и в лунных условиях, но есть одна сложность: часы на Луне идут немного быстрее, чем на Земле — так работает общая теория относительности, которая гласит, что массивные объекты замедляют течение времени.

Часы на Луне уходят вперёд от земных примерно на 56 микросекунд в день, гласят результаты опубликованного учёными NIST исследования. При этом относительное движение Луны оказывает на часы противоположное влияние, слегка их замедляя, но этот фактор недостаточно выражен, чтобы значительно влиять на гравитационный эффект, который их ускоряет.

Точная конфигурация лунных спутниковых группировок пока не определена. Американское NASA, европейское ЕКА и японское JAXA сейчас курируют проекты навигационных систем, которые будут разрабатываться совместно с коммерческими партнёрами. В NASA это «Лунная система ретрансляции и навигации» (Lunar Communication Relay and Navigation System); в ЕКА — Moonlight Initiative; в JAXA — «Лунная навигационная спутниковая система» (Lunar Navigation Satellite System). И все они объединятся в совместимую структуру LunaNet, которая обеспечит партнерским проектам взаимодействие. То есть каждый участник работает над своим проектом, но все они будут работать в единой системе.

Предполагается, что европейская Moonlight будет представлена группировкой из как минимум пяти аппаратов: одного большого спутника связи и четырёх навигационных, которые будут размещены на специальных орбитах для оптимизации покрытия на Южном полюсе. Это обеспечит 15 часов надёжного приёма сигнала в сутки, но архитектура Moonlight предполагает возможность масштабирования, то есть для более сложных миссий можно будет запускать новые аппараты.

Мнения Китая и других стран в отношении систем лунной навигации пока неизвестны — не исключено, что на Луне их будет несколько, как и на Земле. В марте страна запустила на лунную орбиту спутник «Цюэцяо-2» (Queqiao-2), предназначенный для работы в качестве ретранслятора. Впрочем на некоторых международных форумах Китай выражал «заинтересованность в достижении международной совместимости».

В России создали аналог A-GPS для смартфонов на базе ГЛОНАСС

Первую в России технологию для ускорения определения местоположения на смартфонах, которая представляет собой аналог западного A-GPS, разработали в АО «ГЛОНАСС». Об этом представителям СМИ рассказал глава компании Алексей Райкевич.

 Источник изображения: Thom Holmes / unsplash.com

Источник изображения: Thom Holmes / unsplash.com

«АО «ГЛОНАСС» — оператор госинформсистемы «ЭРА-ГЛОНАСС», разработало первую в России технологию А-ГЛОНАСС (А-ГНСС), ускоряющую определение местоположения для мобильных устройств», — рассказал Райкевич. Он добавил, что продукт уже внесён в единый реестр отечественного ПО Минцифры, а решение экспертного совета ведомства подтверждает полное соответствие требованиям к ПО, которое разрабатывается и используется в России. «А-ГЛОНАСС готова к установке на смартфоны с отечественными операционными системами, на российскую аппаратуру спутниковой навигации, устройства вызова экстренных оперативных служб (кнопки SOS) и тахографы», — добавил глава АО «ГЛОНАСС».

В беседе с журналистами Райкевич рассказал, что обработка смартфонами и другими мобильными устройствами координат от глобальных спутниковых систем навигации занимает от десятков секунд до нескольких минут. Особенно чувствительны задержки в городах, на территории которых плотная застройка мешает приёму спутникового сигнала. Технология А-ГЛОНАСС делает обработку данных незаметной для человека благодаря тому, что необходимая для определения местоположения информация при открытии приложений, электронных карт и навигаторов дополняется вспомогательными данным, передаваемыми через интернет, мобильные сети и Wi-Fi.

«А-ГЛОНАСС обеспечивает качественное импортозамещение A-GPS и, в отличие от зарубежных аналогов, российская технология не передаёт данные о местоположении мобильного устройства на сервера иностранных компаний и повышает информационную безопасность пользователей», — считает господин Райкевич.

В сообщении отмечается, что новая технология с точки зрения наземной навигации исключает зависимость России от зарубежного оборудования и технологий, от отключения или каких-либо ограничений работы аналогичных решений. Внедрение А-ГЛОНАСС должно дать импульс производству российской навигационной аппаратуры, которая будет предоставлять пользователям внутри страны передовое ПО в сферах определения местоположения и защиты от подмены сигнала. Отмечается, что разработка не имеет аналогов в России и она поможет сформировать навигационный и технологический суверенитет страны, а также повысит безопасность данных миллионов россиян.

Муравьи и пчёлы научили крошечные дроны ориентироваться без GPS, маяков и лидаров

Сегодня система ориентации дронов в пространстве, например, для самостоятельного возвращения на базу, требует либо радиосигналов, либо мощных вычислительных средств на борту коптеров. Такие решения не подходят для работы в условиях ограничения связи или для миниатюрных устройств. В то же время муравьи и пчёлы не имеют проблем с ориентацией в пространстве, несмотря на свою миниатюрность. Оказалось, что дроны тоже так могут.

 Источник изображений: TU Delft

Источник изображений: TU Delft

Муравьи для запоминания обратной дороги сочетают два подхода. Во-первых, своими глазами они делают «панорамные снимки» окружающей местности. Во-вторых, они «подсчитывают» количество шагов между местами, которые запоминают. Сопоставляя одно и другое муравей способен вернуться домой после любого путешествия. Воздушные дроны не могут подсчитывать шаги, хотя возможность делать панорамные снимки для них не проблема.

Летающие дроны могут воспользоваться иным методом одометрии, подсмотренным у пчёл. Пчёлы запоминают скорость перемещения между локациями по скорости перемещения объектов, над которыми они пролетают. Это также помогает запомнить направление движения.

Учёные из Делфтского технического университета в Нидерландах (TU Delft) совместили обе технологии в крошечном 56-грамовом квадрокоптере CrazyFlie, который был слишком мал, чтобы нести мощную систему автономной навигации. При смене маршрута он делал панорамный снимок местности, а затем запоминал время и скорость движения к следующему месту съёмки. Прокручивая локации в обратном порядке, дрон смог вернуться домой по 100-м лабиринту, задействовав всего 1,16 Кбайт памяти.

Когда-нибудь тысячи крошечных дронов с подобной технологией смогут самостоятельно выполнять свою работу по инспекции объектов, мониторингу сельхознасаждений или даже опылению растений, полагаясь лишь на муравьиную способность ориентироваться в пространстве. Это будет забавный виток эволюции.

В Европе разработают датчики для спутниковой навигации повышенной точности

Финансируемый властями Евросоюза консорциум INPHOMIR объявил о намерении разработать датчики, которые помогут спутникам осуществлять навигацию с более высокой точностью, а беспилотным летательным аппаратам (БПЛА) — преодолевать большие расстояния, пишет Reuters.

 Источник изображения: inphomir.eu

Источник изображения: inphomir.eu

INPHOMIR планирует создать два новых датчика с ультранизким потреблением энергии, оптический гироскоп и лидар, которые повысят эффективность и доступность космических миссий. Проект оценивается в €5 млн — он обеспечивается за счёт программы финансирования исследований и инноваций в Евросоюзе Horizon Europe.

Системы спутниковой навигации могут работать со сбоями в условиях плохой видимости, при тумане и пыли. Даже небольшие ошибки в измерениях могут вызвать значительные аномалии в позиционировании и расчёте траектории, а также обернуться миллионными издержками.

INPHOMIR разрабатывает датчики на основе фосфида индия — это позволяет повысить эффективность, а также снизить массу и размеры фотонных интегральных схем, в которых для передачи и обработки информации используется свет. Эти технологические решения могут оказаться полезными в работе навигационных модулей БПЛА и транспортных средств с автопилотом.

В Великобритании протестировали основу для квантовой навигационной системы — она станет подстраховкой для GPS

Великобритания первой в мире провела серию испытательных полётов, в которых протестировали основу для технологий перспективной квантовой навигационной системы. Она поможет предотвратить одну из наиболее потенциально опасных, но недостаточно широко освещаемых угроз — глушение и подмену сигнала GPS.

 Источник изображения: twitter.com/QinetiQ

Источник изображения: twitter.com/QinetiQ

Система глобального позиционирования (GPS) настолько глубоко проникла в жизнь современного человека, что стала восприниматься как нечто само собой разумеющееся, но лишь до тех пор, пока спутниковый сигнал по какой-то причине не теряется или «перепрыгивает» в другую точку. Для обычного человека это неприятно, но с кораблями и самолётами дело обстоит куда более критично, особенно если речь идёт о подмене сигнала. Только в 2022 году зафиксированы 49 605 случаев, когда гражданские самолёты стали жертвами подмены сигнала GPS, гласит статистика Европейской ассоциации бизнес-авиации. Часто это происходит вблизи зон конфликта для неверной навигации вражеских самолётов или БПЛА. Но результат таких действий также может повлиять на работу авиадиспетчеров, которые полагаются на данные, поступающие напрямую от приборов на самолётах.

Один из способов борьбы с этим — подключение резервных систем навигации, например, инерциальных. Это электронный просчёт пути по данным гироскопов и акселерометров, который является вполне рабочим методом. Но со временем в таких системах накапливаются ошибки, которые в случае с подводными лодками могут исчисляться милями — поэтому им приходится всплывать и сверяться с координатами по GPS. Самолёты движутся намного быстрее, и ошибки в их системах также накапливаются быстрее. Для решения этой проблемы британские компании Infleqtion, BAE Systems и QinetiQ, а также агентство по науке и инновациям UKRI решили создать собственную навигационную систему на основе квантовой механики.

Квантовые навигационные системы получают данные, используя такие явления как квантовая запутанность, квантовая интерференция и сжатие квантового состояния. В сочетании с высокоточными атомными часами и специальным программным анализом для фильтрации помех они способны заменять GPS в течение длительного времени. Недавно на объекте британского Министерства обороны в графстве Уилтшир прошли испытания квантовой системы позиционирования, навигации и синхронизации (PNT) на основе компактных оптических атомных часов Tiqker и установкой на основе ультрахолодных атомов — они работали на самолёте QinetiQ RJ100. Как ожидается, PNT впоследствии будет интегрирована в полномасштабную квантовую инерциальную навигационную систему (Q-INS).

ЕКА запустит систему Genesis для измерения Земли с миллиметровой точностью

Европейское космическое агентство (ЕКА) выделило €76,6 млн на разработку орбитальной обсерватории Genesis, которая сможет определять положение объектов на Земле с точностью до одного миллиметра. Ещё €156,8 млн выделено на запуск низкоорбитальной группировки аппаратов тестирования и повышения надёжности спутниковой навигации.

 Спутник Genesis. Источник изображений: esa.int

Спутник Genesis. Источник изображений: esa.int

Genesis будет обеспечивать работу «Международной земной системы отсчёта» (ITRF). Для этого на борту аппарата будут располагаться спутниковый навигационный дальномер, модуль радиоинтерферометрии со сверхдлинными базами, лазерный дальномер и система измерения доплеровского смещения при обмене радиосигналами между спутниками и наземными станциями (DORIS) — синхронизацию оборудования обеспечит сверхстабильный осциллятор (USO). Сочетание четырёх геодезических методов на одном аппарате позволит добиться точности измерений, которой не удавалось достичь ранее, отметили в компании OHB Italia, выступающей главным подрядчиком в проекте Genesis.

В прошлом году европейская спутниковая система навигации Galileo дополнилась службой High-Accuracy Service (HAS), которая обеспечила точность до 20 см по горизонтали и до 40 см по вертикали. В результате Galileo стала самой точной системой спутниковой навигации в мире, но разрешение в 1 мм, очевидно, обещает ещё более высокую точность. Обновлённая ITRF поможет повысить точность спутниковых систем, включая Galileo «в таких областях как авиация, управление дорожным движением, автономные транспортные средства, позиционирование и навигация», отметили в ЕКА. Это будет востребованным в метеорологии, прогнозировании стихийных бедствий, мониторинге последствий изменения климата, землепользовании и съёмке, а также изучении гравитационных и негравитационных полей.

 Спутник LEO-PNT

Спутник LEO-PNT

Агентство заключило два контракта по €78,4 млн на разработку демонстрационной системы низкоорбитальной навигации и синхронизации LEO-PNT. Это будет группировка спутников для тестирования новых сигналов и частотных диапазонов с целью повышения точности позиционирования при работе совместно с Galileo и другими спутниковыми навигационными системами. LEO-PNT повысит надёжность систем навигации в условиях помех и слабого приёма, включая городские районы с плотной застройкой и даже закрытые помещения. Запуск Genesis запланирован на 2028 год, а группировка LEO-PNT должна быть развёрнута до 2027 года.

Научная подработка: навигационные спутники могут стать детекторами чёрных дыр и тёмной материи

Спутники систем навигации представляют собой сложнейшие приборы по координации синхронизированного с атомными часами времени и расстояний с учётом релятивистских явлений. Они способны и обязаны компенсировать любые гравитационные воздействия на их орбиты. Это уже готовые датчики гравитационных аномалий, сообщили европейские учёные и предложили превратить их в охотников за чёрными дырами и тёмной материей.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Мы впервые предложили использовать замеры гравиметрических научных приборов и параметры орбит спутников глобальных навигационных систем для поиска аномалий, порождённых скоплениями тёмной материи и примордиальными [первичными] чёрными дырами, которые сближаются с Землёй на достаточно близкое расстояние. Работа этого подхода уже была проверена на базе одного из спутников навигационной системы Galileo», — пишут исследователи, которых цитирует информагентство ТАСС.

Первичные чёрные дыры слишком малы, чтобы их гравитационные волны могли уловить современные лазерно-интерферометрические гравитационно-волновые обсерватории. Считается, что они образовались из неоднородностей первичной материи вскоре после Большого взрыва. Многие из них уже испарились за счёт излучения Хокинга, но самые большие могут ещё оставаться во Вселенной. Это объекты планетарной массы, и в случае пересечения Солнечной системы в относительной близости Земли навигационные спутники отреагировали бы на их присутствие, как и на присутствие сгустков тёмной материи.

Группа европейских физиков под руководством профессора Брюссельского свободного университета (Бельгия) Себастьяна Клессе разработала методику косвенного использования развёрнутых на орбите навигационных спутниковых группировок для поиска примордиальных чёрных дыр в окрестностях Земли, включая поиск скоплений тёмной материи.

Очевидным образом прохождение небольшой чёрной дыры или сгустка тёмной материи рядом с Землёй окажет измеряемое воздействие на движение околоземных искусственных спутников, например, их ускорение и большую полуось орбиты. В сочетании с наземным оборудованием и спутниками по изучению земной гравитации это позволит примерно определить массу и положение гравитационных аномалий, если таковые произойдут, и сделать вывод о вероятной природе вызвавших их объектов.

Согласно предварительным расчётам, один спутник навигационной системы Galileo сможет уловить такую гравитационную аномалию на удалении около 1,5 а.е. от Земли (от Земли до Солнца в среднем 1 а.е.). Но чем больше спутников будет задействовано, тем дальше будут отодвигаться границы чувствительности.

Нечто подобное 10 лет назад проделали российские астрономы. Тогда они использовали данные орбитальных движений Солнца, планет и некоторых астероидов, чтобы попытаться обнаружить гравитационные аномалии в Солнечной системе. Наблюдение за навигационными спутниками в течение 30 лет способно на порядок улучшить определение подобных аномалий и принести весомый научный результат. Более того, если в окрестностях Земли будет обнаружена первичная чёрная дыра у учёных уже есть идея превратить её в аккумулятор энергии. Но это уже другая история.

«Яндекс» протестирует навигацию без GPS — по вышкам связи и точкам Wi-Fi

Служба «Яндекс Go» приступила к тестированию функций навигации на основе вышек мобильной связи и точек доступа Wi-Fi для устройств под Android. Компания также начала обучать водителей и автокурьеров по данным навигации нового формата, сообщило ТАСС со ссылкой на пресс-службу компании.

 Источник изображения: Alaksiej Čarankievič / unsplash.com

Источник изображения: Alaksiej Čarankievič / unsplash.com

Потребность в новой навигационной технологии возникла из-за того, что в последние месяцы на территории Москвы значительно ухудшилась работа служб спутникового геопозиционирования. Эти проблемы не связаны с работой приложений, но отражаются на всех службах, связанных с навигационными функциями, включая сервисы «Яндекса».

Водителей и автокурьеров уже начали обучать правильной настройке смартфона для навигации по Wi-Fi. Для корректной работы функций геопозиционирования в новом формате требуется войти в меню разработчика на устройстве и отключить ограничение на сканирование Wi-Fi.

Проблемы с навигационными функциями в приложениях служб «Яндекса» стали отмечаться в мае 2023 года. С того момента улучшений в ситуации отмечено не было — затруднения в работе GPS продолжаются, вызывая сбои в службах аренды автомобилей или вызова такси. При этом в «Яндексе» заверили, что неполадки в системах геопозиционирования не влияют на механизм формирования цен в «Яндекс.Такси».

Учёные из США нашли способ подводной навигации без GPS с помощью поляризованного солнечного света

Хотя GPS и другие спутниковые системы эффективно используются для определения координат на земле, под водой эти системы неэффективны. Учёные из Университета штата Иллинойс Урбана-Шампейн нашли способ определения местоположения, проанализировав модели подводной поляризации света.

 Источник изображения: University of Illinois Urbana-Champaign

Источник изображения: University of Illinois Urbana-Champaign

Если системы GPS определяют местоположение пользователя на суше с помощью сигналов нескольких спутников, то под водой такие радиосигналы крайне слабы и неустойчивы даже на относительно небольшой глубине. В результате технологию не могут использовать ни дайверы, ни подводные лодки или другие объекты.

При этом солнечный свет проникает значительно глубже, чем радиоволны, хотя и поляризуется в воде, причём направление поляризации во многом зависит, например, от угла, под которым свет падает на поверхность, а это, в свою очередь, зависит от даты, времени дня, а также географического положения.

Команда университета сделала около 10 млн фотографий подводной камерой со специальной оптикой в нескольких локациях — как в США, так и, например, в Северной Македонии. Фотографии делали в разных условиях, в разные даты, на разных глубинах и в разное время суток. После этого их использовали для тренировки нейросети, чтобы выявить предсказуемые модели поляризации с учётом данных факторов.

В результате нейросеть научилась распознавать по подводным фото координаты с точностью до 40-50 км, хотя по мере развития технологий точность значительно повысится. Система действует на максимальной глубине до 300 м — глубже свет почти не проникает.

Тем не менее, потенциально технология позволяет определять координаты под водой как в открытом океане, так и, например, в чистых или мутных водоёмах на суше, днём, ночью или на глубине. Отчёт о результатах исследования авторы недавно опубликовали в журнале eLight.

Whoosh запустит систему навигации самокатов на базе внутренних датчиков

Стало известно, что специалисты российского сервиса кикшеринга Whoosh работают над внедрением системы системы навигации, основанной на данных внутренних датчиков, благодаря чему существенно повысится точность определения местоположения самокатов. Об этом пишет информационное агентство ТАСС со ссылкой на слова генерального директора Whoosh Дмитрия Чуйко.

 Источник изображения: Pixabay/doosenwhacker

Источник изображения: Pixabay/doosenwhacker

Согласно имеющимся данным, система навигации электросамокатов предусматривает использование специальных внутренних датчиков, способных определять скорость вращения колёс, направление движения и другие параметры. Анализ этих данных позволит получать более точные координаты самокатов.

«Мы активно развиваем историю геопозиционирования с использованием Wi-Fi и GSM-сетей. Ребята активно готовят к запуску уже в поле инерциальную систему позиционирования. Это система, которая позволяет, не используя никаких привязок, а используя только данные с датчиков самоката, скорость вращения колеса, направление движения и так далее, определять, куда самокат перемещается», — сообщил господин Чуйко в беседе с журналистами.

Получается, что система сможет работать автономно, не подключаясь к мобильным сетям или GPS. Это особенно актуально в свете сбоев в работе GPS в Москве.

Японские учёные испытали навигацию с помощью космических лучей — систему можно будет использовать под водой и под землёй

Система GPS чрезвычайно востребована в обиходе — она помогает в навигации, слежении, картографировании и всевозможных других целях. Тем не менее, GPS имеет некоторые важные недостатки, в первую очередь — практически не работает в зданиях, пещерах или, например, под водой. Поэтому японские учёные разработали метод альтернативной навигации — с использованием т.н. «космических лучей».

 Источник изображения: BlenderTimer/pixabay.com

Источник изображения: BlenderTimer/pixabay.com

Как сообщается в журнале iScience, альтернативная система заменит навигацию с помощью радиоволн — вместо этого оборудование регистрирует мюоны космических лучей. Команда исследователей провела успешный тест — однажды система, возможно, будет применяться исследовательскими и спасательными командами, например для точного направления подводных роботов или для того, чтобы автономные модули могли ориентироваться под землёй.

По словам одного из авторов исследования Хироюки Танаки (Hiroyuki Tanaka) из международного объединения The International Muography Research Orgzanization (Muographix), теперь разработан новый тип навигации, названный «мюометрической системой позиционирования (muPS), способной работать под землёй, в помещениях и под водой».

Данные элементарные частицы мюоны давно используются в археологических исследованиях, для поиска нелегально транспортируемых ядерных материалов на границах, для точного мониторинга активности вулканов — в попытках предсказать новые извержения.

Так, в 2008 году учёные Техасского университета в Остине перепрофилировали старые мюонные детекторы для поиска скрытых руин майя в Белизе. Физики Лос-Аламосской национальной лаборатории разрабатывают портативные варианты мюонных систем, позволяющих открыть секреты конструкции купола собора Санта-Мария-дель-Фьоре во Флоренции.

В 2016 году учёные использовали мюонные технологии для обнаружения скрытого коридора в Великой пирамиде Гизы в Египте, а годом позже обнаружили таинственное пространство в ещё одной зоне той же пирамиды. Наконец, только в прошлом месяце учёные использовали мюонную визуализацию, открыв ранее скрытую полость в руинах древнего некрополя в Неаполе — на глубине около 10 м под поверхностью современного итальянского города.

«Яндекс» повысил точность навигации в своих сервисах при помощи Wi-Fi и Bluetooth

Компании «Яндекс» удалось улучшить определение геопозиции в своих сервисах «Яндекс-Карты» и «Навигатор» за счёт использования Wi-Fi и Bluetooth без применения GPS. Представители пресс-службы «Яндекса» сообщили, что включение беспроводных модулей повысит точность навигации и уменьшит влияние сбоев спутниковой навигации. Приложения «Яндекса» требуется обновить до последних версий. Приложение для водителей такси также обновилось, сообщили в «Яндексе».

 Источник изображения: «Яндекс»

Источник изображения: «Яндекс»

Разработчики «Яндекса» работают над улучшением определения местоположения. Мнения о применяемых ими методах разделились. Некоторые пользователи предполагают, что сервисы определения местоположения «Яндекса» измеряют силу сигнала от близлежащих точек Wi-Fi, Bluetooth и сотовых вышек для уточнения местоположения смартфона.

Другие утверждают, что нет смысла определять силу сигнала, она слишком сильно зависит от препятствий и может вносить непредвиденные искажения. Скорее всего, «Яндекс» вычисляет или корректирует данные о местоположении, основываясь на сопоставлении известных «Яндексу» точек доступа с их местоположением. В этом очень большую помощь могут оказывать устройства с голосовым помощником «Алисой», точные координаты всех таких устройств, скорее всего, имеются в базах данных компании.

Улучшение геолокации «Яндекса» особенно актуально для жителей Москвы. Там с 4 мая наблюдаются перебои в работе спутниковой навигации, что создаёт проблемы не только у водителей личного транспорта, но и у служб такси, каршеринга и кикшеринга.

Одновременно с улучшением геолокации «Яндекс» запустил в тестовом режиме службу роботакси в московском Ясенево. Представители компании утверждают, что беспилотное такси во время движения не использует спутниковые системы навигации и не требует постоянного соединения с интернетом.

Кубсат CAPSTONE успешно протестировал технологию для лунного GPS и сфотографировал Луну

Мини-спутник CAPSTONE агентства NASA, движущийся по орбите вокруг Луны, в мае впервые успешно испытал технологию навигации, родственную земной GPS, но предназначенную для Луны. В будущем она поможет участникам лунных миссий эффективнее ориентироваться на поверхности нашего спутника.

 Источник изображения: NASA

Источник изображения: NASA

Космический аппарат CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) представляет собой объект размером с микроволновку, движущийся по особой орбите, которая в будущем будет выделена для лунной орбитальной станции Gateway, и призван выполнить ряд задач для последующего освоения Луны.

NASA сообщило, что было проведено тестирование технологии CAPS с участием двух космических аппаратов: CAPSTONE и окололунного орбитального модуля Lunar Reconnaissance Orbiter (LRO). 9 мая проведён эксперимент, в ходе которого CAPSTONE отправлял сигнал LRO для оценки дистанции между аппаратами и их относительной скорости. LRO вернул сигнал, после чего CAPSTONE произвёл необходимые вычисления. Тест подтвердил возможность собирать измерения с последующей обработкой программным обеспечением CAPS для определения местоположения двух аппаратов. В ходе будущих лунных миссий технология, как ожидается, обеспечит автономную бортовую навигацию.

Помимо успешного выполнения теста CAPS, кубсат CAPSTONE достиг и ещё одной цели миссии — он летает по почти прямолинейной гало-орбите не меньше полугода. В дальнейшем аппарат продолжит движение и испытание различных бортовых технологий до года — в ходе расширенной фазы миссии. Дополнительно кубсат впервые (для себя) сделал снимки лунной поверхности возле местного северного полюса в момент, когда максимально приблизился к Луне 3 мая текущего года.

В ноябре 2022 года CAPSTONE стал первым кубсатом на орбите Луны. В начале 2023 года спутник перестал реагировать на команды с Земли, но позже его функциональность была восстановлена.

«Яндекс Такси» из-за перебоев с GPS будет уточнять адреса у московских пассажиров

Из-за продолжающегося сбоя в работе спутниковых сервисов геопозиционирования в Москве служба «Яндекс Такси» будет дополнительно уточнять у пассажиров адрес посадки при заказе машины, сообщают «РИА Новости» со ссылкой на представителей «Яндекса».

 Источник изображения: Viktor Avdeev / unsplash.com

Источник изображения: Viktor Avdeev / unsplash.com

Сбой в работе систем спутниковой навигации вызвал неполадки не только службы «Яндекс Такси», но также сервисов «Яндекс Драйв» и «Яндекс Самокаты». «Из-за сбоев у некоторых пользователей такси может некорректно отображаться точка посадки. Поэтому теперь мы дополнительно предлагаем проверить адрес, с которого начинается поездка. Сложности возникают и при определении местоположения машин „Драйва” и „Самокатов” в центре города, а старт и завершение аренды могут быть временно недоступны. Мы получаем и обрабатываем все обращения в службу поддержки от пользователей и водителей», — рассказали в «Яндексе».

Представитель компании добавил, что неполадки систем геопозиционирования влияют на все службы и устройства с функциями навигации — это касается и приложений с картографией, и даже фитнес-браслетов. К работе этих сервисов сбои отношения не имеют — проблема в том, что приложения получают неверные координаты уже от навигационного модуля. В «Яндексе» заявили, что используют все доступные средства для минимизации этого эффекта. Проблемы с работой функций геопозиционирования в Москве подтвердили также представители каршеринга «Ситидрайв» и кикшеринга Whoosh.

Ранее в этом месяце сообщалось, что в Москве глушится навигация в пределах Бульварного и Садового кольца. Например, приложение «Яндекс.Навигатор» в такси указывало на Тверскую улицу в районе Бульварного кольца, хотя машина находилась на Охотном Ряду. Подобные сбои, уточнил водитель, наблюдаются в пределах всего Третьего транспортного кольца.

SpaceX доставила на орбиту спутник GPS новейшего поколения

Ракета Falcon 9 компании SpaceX вывела на орбиту очередной спутник GPS последнего поколения, владельцем и оператором которого являются космические силы США. Для запуска использовалась восстановленная первая ступень Falcon 9, уже использовавшаяся для доставки на МКС людей в рамках миссии Crew-5.

 Источник изображения: Lockheed Martin

Источник изображения: Lockheed Martin

Первая ступень успешно отделилась от корабля через 2 минуты и 40 секунд после пуска с мыса Канаверал и безопасно вернулась на Землю, приземлившись на площадку автономной баржи SpaceX A Shortfall of Gravitas через 8 минут 40 секунд после взлёта. После отделения первой ступени вторая ступень доставила груз — спутник GPS III Space Vehicle 06, являющийся аппаратом последнего поколения системы навигации GPS — на высоту около 4300 км от поверхности Земли, где спутник и был отправлен в самостоятельный полёт через 1 час 30 минут после взлёта ракеты. Спутник, названный в честь Амелии Эрхарт (Amelia Earhart) — знаменитой женщины-авиатора, совершившей полёт через Атлантический океан, продолжит самостоятельное движение на орбиту, находящуюся на высоте 20 200 км над планетой. В SpaceX заявили, что обтекатель, защищавший груз во время первой фазы полёта, выловят из Атлантического океана для возможного использования в будущем.

Это уже шестой из серии спутников GPS III, до этого спутник Нил Армстронг (Neil Armstrong) был доставлен на орбиту в июне 2021 года. Новый экземпляр является частью проекта по модернизации «флота» навигационного оборудования, реализуемого США. Спутник, как ожидается, проработает порядка 15 лет и является одним из 32 образцов нового поколения, которые в итоге намерены вывести в космос.

Новое поколение спутников втрое точнее, в восемь раз защищённее от подавления системами противодействия и имеет модульный дизайн для адаптации к изменениям целей миссий и возникающим угрозам. По имеющимся в США данным, около половины населения мира (4 млрд пользователей) используют GPS-технологию во всевозможных целях — от дорожной навигации до систем точного земледелия.

Впрочем, это не единственная навигационная система, поскольку имеется российская ГЛОНАСС, китайская Beidou и европейская Galileo, не считая региональных систем вроде индийского варианта.


window-new
Soft
Hard
Тренды 🔥
Telegram объявил конкурс на создание аналога YouTube для мессенджера 39 мин.
Чтобы разблокировать соцсеть X в Бразилии, Маск заплатил штраф $5 млн, но не туда 12 ч.
Новая статья: Gamesblender № 694: глобальный сбой в PSN, релиз Unreal Engine 5.5 и новый шутер по StarCraft 15 ч.
СМИ сообщают о грядущей ликвидации одной из российских альтернатив «Википедии» 18 ч.
В обновлённом Telegram появились подарки, подтверждение телефонов, улучшенные жалобы и RTMP-трансляции 20 ч.
Accenture сформировала подразделение NVIDIA Business Group и обучит 30 тысяч сотрудников полному стеку ИИ-технологий NVIDIA 24 ч.
Linux-вирус Perfctl заразил с 2021 года тысячи серверов и скрытно майнит на них криптовалюту 05-10 14:28
Началось открытое бета-тестирование браузера Arc для Android — он умеет ходить по сайтам за пользователя 05-10 11:54
Обновление Samsung привело к поломке смартфонов Galaxy S10 и Note 10 по всему миру 05-10 06:59
Минцифры опубликовало правила регистрации блогеров-десятитысячников в реестре Роскомнадзора 05-10 01:00