Сегодня 03 апреля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → солнечная энергия
Быстрый переход

Учёные создали ультратонкие кремниевые солнечные панели для авиации, космоса и носимой электроники

Современным кремниевым солнечным панелям не хватает гибкости в буквальном смысле этого слова. Они сравнительно толстые и поэтому тяжёлые, что мешает им попасть в авиацию и шире использоваться в носимой электронике. Для космоса это тоже важно, поскольку вывод на орбиту каждого килограмма стоит приличных денег. Возможно, с этим помогут учёные из Китая и Австралии, которые создали ультратонкие и гибкие панели из привычного кремния.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

На днях государственное китайское издание Science and Technology Daily процитировало профессора Цзянсуского университета науки и технологий (JUST) Ли Янга (Li Yang), который сказал, что солнечные элементы из кристаллического кремния, которые изготавливаются из кремниевых пластин, были и остаются наиболее зрелым и широко используемым решением для выработки электрической энергии, «но они сталкиваются с двумя основными технологическими узкими местами».

Одним из недостатков современных кремниевых фотопанелей является то, что эффективность преобразования энергии кремниевыми элементами большой площади остаётся ограниченной на уровне 26 %; другим препятствием является толщина элемента — обычно от 150 до 180 мкм, что затрудняет их использование в случаях, требующих более гибкого и лёгкого материала для установки на изогнутые крыши, спутники и космические станции.

Возглавляемая профессором Ли группа учёных из JUST, австралийского университета Кёртин и компании LONGi Green Energy Technology опубликовала в журнале Nature статью, в которой сообщила о создании из кристаллического кремния фотопанели толщиной около 50 мкм. Это тоньше, чем лист обычной писчей бумаги формата A4. Эту фотопанель нельзя согнуть пополам как лист бумаги, но можно изогнуть с достаточной степенью кривизны без разрушения.

Что важно, КПД ультратонкой фотопанели превысил 26 %. Учёные создали ещё несколько фотоэлементов толщиной от 55 до 130 мкм, и у всех у них эффективность превысила 26 %.

Профессор Ли сказал, что его группа работает над созданием более гибких и эффективных кристаллических кремниевых солнечных элементов, которые в один прекрасный день смогут стать такими удобными в использовании, как рулон пленки.

Китайские производители солнечных панелей уничтожают европейских конкурентов, но Брюссель не знает, что с этим делать

Как сообщает издание Politico, Европейский союз стоит перед серьёзнейшим выбором: хочет ли он быть «зелёным» или стратегически успешным в перспективе? Ибо одновременно и то и другое у ЕС не выйдет. Европейские производители солнечных панелей открыто говорят, что если власти не предпримут защитных мер, то китайская продукция уничтожит их бизнес за считанные месяцы или даже недели.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Несмотря на то, что Европейскому союзу необходимо избавиться от выбросов углекислого газа, он всё больше зависит от импорта из Китая, который он называет экономическим конкурентом и, что ещё хуже, системным соперником», — пишет издание.

С одной стороны, ЕС выделяет миллиарды евро на ускоренное развёртывание солнечных электростанций по всей Европе. Панели для этих задач и объёмов можно купить только в Китае, включая поставки из Синьцзян-Уйгурского автономного района, о котором вне политического контекста даже говорить нельзя, не то что заводить тесные экономические отношения.

Подобная бизнес-модель грозит уничтожить несколько последних европейских предприятий по выпуску солнечных панелей и идёт вразрез с предложениями группы стран во главе с Францией, которые ратуют за реиндустриализацию Европейского союза. Такое противостояние обязательно выльется в длительные торги в правительстве ЕС с непонятным пока результатом. Но то, что это только затянет принятие стратегического решения, каким бы оно ни было, очень и очень вероятно.

 Источник изображений: IEA

Прогнозируемые мощности по выпуску солнечных панелей в 2027 году. Источник изображений: IEA

«Ситуация действительно тревожная, — сказал Йохан Линдаль (Johan Lindahl), генеральный секретарь Европейского совета по производству солнечной энергии (ESMC), представляющий местных производителей. — Мы можем потерять большую часть европейской промышленности в ближайшие пару месяцев, если не будет сильного политического сигнала».

Европейская комиссия начала предварительные обсуждения вариантов оказания помощи производителям, но при этом не взяла на себя никаких конкретных обязательств во время прошедших в минувший понедельник дебатов в Европейском парламенте, которые, как надеялись многие в отрасли, покажут, что блок серьёзно относится к этому вопросу.

Глава финансовых служб Европейской комиссии Мэйрид Макгиннесс (Mairead McGuinness ) во время сессии в Страсбурге заявила европейским законодателям, чтобы они «работали в тесном контакте» и что низкие цены на продукцию «явно являются проблемой для производителей солнечных панелей в ЕС». В то же время она подтвердила, что власти ЕС будут «тесно сотрудничать с промышленностью ЕС, чтобы приложить все усилия на техническом и политическом уровне».

 Затраты на производство солнечных панелей по странам с разбивкой на категори

Затраты на производство солнечных панелей по странам с разбивкой на категории

На сегодняшний день китайские компании контролируют свыше 80 % глобальной цепочки поставок кремниевых солнечных панелей. Для сравнения, ЕС произвёл только 3 % солнечных панелей, установленных в прошлом году. Можно ли в таких условиях что-то предпринять? Это представляется маловероятным.

Что-то изменить может только полная смена курса на развитие соответствующей отрасли в Европе. Необходимо принять, что Китай является экзистенциальной угрозой и шанс есть только в развитии настолько передовых технологий, где Европа ещё имеет преимущества. В конце концов, необходимо осознать существенную угрозу национальной безопасности и действовать соответствующим образом. И всё бы хорошо, но только летом этого года в ЕС выборы, так что чиновники будут заняты совсем другими проблемами.

Установлен рекорд по эффективности солнечных панелей на квантовых точках — до кремния ещё далеко

Учёные из Ульсанского национального института науки и технологий (UNIST) в Южной Корее создали самые эффективные на сегодня солнечные панели на основе квантовых точек. КПД этих солнечных элементов составил 18,1 %. Если сравнивать с кремнием, то это мало, но у последнего за плечами полвека исследований, тогда как квантовые точки начали изучать менее 15 лет назад. Перспективы у новой технологии головокружительные.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Солнечные элементы из кремния взаимодействуют со светом всей поверхностью. Квантовые точки преобразуют свет в поток электронов только там, где они нанесены — точечно, как следует из их названия. Следует помнить, что определение «квантовые» в данном случае относится к количественной величине, а не к качественной. Квантовая точка — это крохотная порция полупроводникового материала, который взаимодействует со светом (с фотонами).

Особенность использования порций — квантов — светочувствительного материала заключается в том, что они могут быть изготовлены разного размера и, следовательно, будут чувствительны каждая к своему спектру. Материал в виде квантовых точек можно наносить на подложку методом струйной печати на рулонах или с помощью разбрызгивания. Это намного проще и дешевле, чем выпускать солнечный элемент из кремния.

Наивысший теоретический КПД у квантовых точек из органических материалов. Также они более безопасны с точки зрения экологии. Но у них есть существенный недостаток — боязнь влажности и нагрева, включая нежелательное длительное нахождение под прямыми солнечными лучами. Учёные из Южной Кореи решали именно эту проблему, попутно пытаясь установить новый рекорд эффективности для солнечных ячеек на квантовых точках.

Если верить исследователям, они смогли повысить сопротивляемость квантовых точек погодным условиям. Для этого учёные воспользовались перовскитом, который уже зарекомендовал себя в фотовольтаике. Но в этот раз они нанесли на подложку массив из перовскитных квантовых точек, а не создали сплошной слой.

 Фрагмент диаграммы с достижениями в области фотоэлектричсеких ячеек (квантовые точки обозначены ромбом с красной каймой). Источник изображения: NREL

Часть диаграммы с достижениями в сфере фотоэлектрических ячейках. Квантовые точки обозначены ромбом. Источник изображения: NREL

Экспериментальные солнечные панели на квантовых точках из перовскита сохраняли эффективный уровень преобразования света в электрический ток в течение 1200 ч при нормальных условиях и 300 ч при нагреве до 80 °C. Уровень КПД достиг рекордного значения в 18,1 %, что зафиксировали в американской лаборатории NREL (выше на рисунке данные уже с указанием рекорда UNIST — это свежее обновление диаграммы). Предыдущий рекорд в 16,6 % КПД был поставлен фотопанелями на квантовых точках в 2020 году австралийским Квинслендским университетом. Идём к новым вершинам. Когда-нибудь кремний уйдёт в прошлое, а на его место придут, в том числе, солнечные панели на квантовых точках.

Деградация солнечных электростанций в США «соответствует ожиданиям», выяснили учёные

Учёные Национальной лаборатории возобновляемых источников энергии (NREL) в США провели исследования почти на 2500 объектах по выработке электричества от солнечного света. Несмотря на опасения, большинство фотоэлектрических систем за годы работы испытали минимальный ущерб от кратковременных экстремальных погодных условий и показали скромную деградацию, что обещает приблизить переход на возобновляемые источники энергии.

 Контроль качества солнечных панелей. Источник изображения: PVEL

Контроль качества солнечных панелей. Источник изображения: PVEL

Изучению подверглись коммерческие и коммунальные солнечные электростанции по всей территории Соединенных Штатов, развёрнутые в период с 2008 по 2022 год. Были получены данные от 25 тыс. инверторов из 37 штатов. Исследования охватили почти 8 ГВт фотоэлектрических мощностей со средним временем эксплуатации 5 лет. С учётом того, что в 2022 году в США было чуть больше 100 ГВт установленной мощности солнечных электростанций, учёные изучили определённо меньше 10 % от работающих систем. Однако для качественной статистики этого вполне достаточно.

Исследователи выяснили, что в среднем производительность фотопанелей снижается на 0,75 % в год, что соответствует аналогичным значениям, о которых сообщалось в предыдущих исследованиях. Анализ показал, что системы в зонах с более высокой температурой демонстрируют вдвое большую потерю производительности, чем системы в более прохладном климате: на 0,88 % в год и 0,48 % в год соответственно. В целом, в 90 % исследованных систем потери производительности составляли менее 2 % в год.

«Во-первых, это показывает, что наш парк фотоэлектрических систем в целом не выходит из строя катастрофически, а, скорее, деградирует скромными темпами в пределах ожиданий, — сообщили учёные. — Важно, чтобы мы как можно точнее определили этот показатель, потому что это небольшое, но ощутимое число используется почти во всех финансовых соглашениях, которые финансируют солнечные проекты, и обеспечивает важнейшие рекомендации для отрасли».

Краткосрочное воздействие экстремальных погодных условий, таких как наводнения, сильные ветры, град, лесные пожары и молнии, в большинстве исследованных фотоэлектрических систем было минимальным. Средняя продолжительность отключения после экстремального погодного явления составила два–четыре дня, что привело к снижению среднегодовых показателей выработки на 1 %.

В общей сложности в 12 системах из 6400 произошли отключения на две недели и более. Большинство отключений произошло из-за наводнений и дождей, за которыми последовали порывы ветра. В большинстве систем из набора данных произошел только один сбой, связанный с погодой.

Критическими для выживания солнечных электростанций погодные условия возникли бы в случае увеличения градин свыше 25 мм, скорости ветра более 90 км/ч и снежного покрова более 1 м. При таких условиях солнечные панели чаще бы выходили из строя, на что должны обратить внимание производители фотопанелей, если они хотят повысить надёжность своей продукции.

«Мы не считаем, что какой-либо из этих анализов свидетельствует о том, что фотоэлектрические системы ненадежны или особенно уязвимы к экстремальным погодным условиям. Фотоэлектрические системы продемонстрировали, что они могут обеспечивать резервное питание и спасать жизни, когда окружающая инфраструктура повреждена экстремальными погодными явлениями, — сказал исследователь NREL Дирк Джордан. — Тем не менее, есть дальнейшие меры, которые мы можем предпринять для улучшения качества оборудования и особенно передовых методов установки для повышения устойчивости к этим погодным явлениям».

В целом исследование показало, что при переходе к возобновляемой энергетике на солнечные панели можно положиться. Однако хотелось бы обратить внимание на такой факт, как ускоренная деградация солнечных панелей после 10 лет эксплуатации, что не отражено в работе учёных из США, но фиксируется исследователями в других странах.

В Австралии построят многоэтажку с окнами из «солнечного» стекла — оно генерирует электроэнергию и не только

Новые технологии умного остекления пока не стали массовым явлением в современной архитектуре. Пожалуй, больше всего новостей приходит из Австралии, где даже зимой много солнца. Умное остекление оконных проёмов позволит экономить на охлаждении и отоплении зданий, а также оно способно вырабатывать электрическую энергию, совершенно не поглощая видимого света.

 Источник изображения: Hayball Architects

Источник изображения: Hayball Architects

Как сообщает австралийская ClearVue Technologies, архитектурное бюро Hayball Architects выбрало умные окна компании для остекления шестиэтажного здания, которое будет построено для одного из крупнейших австралийских профсоюзов CFMEU. По некоторым оценкам, пропускающие обычный свет умные окна помогут снизить энергопотребление здания на отопление и охлаждение до 70 %.

По всей площади стёкол в стеклопакете BIPV нанесено некое нанопокрытие, которое переотражает инфракрасные и ультрафиолетовые лучи в солнечном спектре в сторону кромки окон, где размещены солнечные панели, чувствительные к этим диапазонам. Видимый свет проникает в помещение и создаёт там обычное комфортное для людей освещение.

Благодаря своей структуре умные стёкла остаются чуть холоднее по отношению к окружающему воздуху, чем обычное стекло (на 3,5 °C днём). Это позволяет меньше тратить на кондиционирование воздуха в помещении, не говоря о том, что окна сами вырабатывают электричество.

 Источник изображения: ClearVue Technologies

Умные стёкла BIPV размещены в левом проёме. Источник изображения: ClearVue Technologies

Здание для профсоюза будет строиться в Мельбурне. Производством стекла, по-видимому, будет заниматься местная компания Melbourne Safety Glass. Стоимость проекта составит 12 млн австралийских долларов ($8 млн). Начинание может стать хорошей рекламой умному остеклению. Эта и подобные технологии давно рвутся в жизнь.

Япония попытается разрушить китайскую монополию на солнечные панели с помощью перовскита

Япония и весь мир проиграли Китаю на рынке кремниевых солнечных панелей. По данным Международного энергетического агентства, китайские компании контролируют более 80 % в мировой цепочке поставок кремниевых солнечных панелей и ещё больше в сфере выпуска поликристаллического кремния для таких панелей. Переломить ситуацию можно только с помощью новых решений, которыми должны стать тонкоплёночные перовскитные солнечные панели.

 Источник изображения: George Nishiyama/The Wall Street Journal

Источник изображения: George Nishiyama/The Wall Street Journal

«Мы выиграли в технологии, но проиграли в бизнесе», — заявил Хироо Иноуэ (Hiroo Inoue), генеральный директор Японского агентства природных ресурсов и энергетики, добавив, что японские фирмы постигла аналогичная участь в производстве жидкокристаллических дисплеев и полупроводников. Но в Японии продолжают считать, что инженерный и научный персонал в стране всё ещё качественно опережает китайский.

Массовое производство тонкоплёночных перовскитных солнечных панелей может стать тем рычагом, который опрокинет доминирование Китая на рынке солнечных элементов. По крайней мере, власти Японии не жалеют средств, чтобы подтолкнуть отечественные компании к массовому производству перовскитных элементов. На эти цели, например, с недавних пор выделено свыше $400 млн и этим власти не ограничатся. В США также выделяются бюджетные средства на разработку перовскитных фотоэлементов.

Перовскитные фотоэлементы начали своё восхождение менее десяти лет назад. К сегодняшнему дню массовые кремниевые солнечные элементы имеют КПД не выше 22 %. Опытные перовскитные элементы, которые готовят к массовому производству, готовы стартовать с КПД от 25 %. К этому следует добавить намного менее энергоёмкое производство панелей с перовскитом, которое не требует обжига, как кремниевые пластины. Также перовскит может наноситься из жидкой фазы на плёнки, что позволит покрыть фотопанелями едва ли не любую поверхность. На ощупь они как фотоплёнка, только намного шире, говорят разработчики. Толщина перовскитного слоя составляет всего 1 мкм. Кремний раз в 20 толще и тяжелее. Это прошлый век, считают в Японии.

Одними из первых массовый выпуск фотопанелей из перовскита в Японии намерена начать компания Sekisui Chemical. Она будет выпускать перовскитные панели рулонами шириной 30 см. Строительство фабрики уже началось. Начало производства ожидается в 2025 году. Такие панели можно будет использовать также в помещении, собирая энергию от света везде, где только можно. Обычным солнечным панелям из кремния такое даже не снилось. Для гибких панелей есть столько места, что эта ниша будет ещё не скоро заполнена.

Важным моментом производства перовскитных панелей станет независимость от поставок сырья из Китая. Для Японии и других передовых стран это одно из самых больных мест. «Посмотрите, что Китай делает с полупроводниками. Это издевательство, — говорит учёный Цутомо Миясака, один из ведущих специалистов страны по перовскитам, имея в виду ограничения Пекина на экспорт редкоземельных элементов галлия и германия, используемых в чипах. — Компоненты из перовскитовых элементов могут быть изготовлены внутри страны».

В частности, для выпуска перовскитных фотоячеек требуется много йода. Япония является одним из крупнейших в мире поставщиком этого элемента. Треть йода на мировом рынке японского производства. Больше йода поставляет только Чили. Япония может не бояться зависимости от Китая в случае массового выпуска перовскитных ячеек.

Почти всё хорошо. Но значительным минусом перовскитных фотоэлементов остаётся их высокая чувствительность к влаге из окружающего воздуха. Это быстро приводит в негодность потенциально хорошие панели. Их нужно защищать от этого и японские учёные создали перспективный герметик, который не даёт панелям превратиться в слизь. Панели Sekisui Chemical смогут работать целых 10 лет и оставаться эффективными всё это время. Хвалёное долголетие кремниевых солнечных панелей, кстати, оказалось далеко от заявленных 25 лет. Они тоже начинают быстро деградировать после 10 лет эксплуатации.

Премьер-министр Японии Фумио Кисида пообещал сделать технологию производства перовскитных фотопанелей коммерчески жизнеспособной в течение двух лет. Япония импортирует около 90 % энергии и энергоносителей с тех пор, как закрыла большинство своих атомных станций после катастрофы на АЭС «Фукусима» в 2011 году. Цель Кисиды амбициозна, но японские инженеры и чиновники настроены оптимистично, ссылаясь на последние технологические достижения.

«Чем сложнее это [технология производства] будет, тем труднее китайцам будет скопировать её», — сказал Миясака, профессор Университета Тоин в Йокогаме и бывший сотрудник лаборатории компании Fujifilm в области солнечных технологий.

Солнечные электростанции поразила эпидемия треснувших стёкол — объяснения ей пока не нашли

Управляющие крупными солнечными электростанциями по всему миру бьют тревогу. Появилось множество сообщений о случаях повреждения фотопанелей без видимых причин. Анализ ситуации по горячим следам показал, что в этом могут быть виноваты изменившиеся технологии производства панелей, что не в полной мере было учтено во время тестирования готовой продукции на производстве.

 Источник изображения: PVEL

Источник изображения: PVEL

«Мы видели сообщения о разбитых без видимых причин стёклах [на панелях], поступающие из Бразилии, Чили, Австралии, США и других стран, — сказал Тристан Эрион-Лорико (Tristan Erion-Lorico), вице-президент по продажам и маркетингу лаборатории тестирования солнечного оборудования PVEL. — Это не зависело от региона, типа системы и производителя. Вот почему это так беспокоит».

Точной статистики повреждений панелей на проектах нет. По данным PVEL, речь идёт о сотнях МВт установленных мощностей. Некоторые случаи детально расследовались и даже были найдены объяснения повреждениям, в частности, доказан факт повреждения стеклянного покрытия слишком мощными роботизированными газонокосилками, которые швыряли камни в панели, но в большинстве случаев причины так и не были выявлены.

Отдельно операторы электростанций подчёркивают, что повреждённые фотопанели не подвергались воздействиям сильного ветра, дождя или града. Просто во время очередной инспекции вдруг обнаруживались новые трещины в стеклянном покрытии панелей, которых не было во время проведения предыдущих проверок.

Ранний анализ случаев растрескивания защитных стёкол фотопанелей показал, что во многих случаях прослеживается некоторая закономерность. Все они относятся к фотопанелям с двумя защитными стёклами — по одному на каждую сторону солнечного модуля. Ранее фотопанели закрывались только одним 3,2-мм защитным калёным стеклом с верхней стороны модуля, тогда как задняя часть модуля зашивалась пластиковой основой. Около 10 лет назад компании наладили выпуск фотопанелей с защитными стёклами с обеих сторон модуля, что должно было повысить их устойчивость к внешней среде и нагрузкам. Однако ради снижения массы модулей толщину защитных калёных стёкол пришлось уменьшить до 2 мм, что в конечном итоге увеличило вероятность их повреждения.

Нюанс в том, что панели с двумя стёклами проходят тестирование на соответствие отраслевым стандартам, но, конечно, не каждая из выпущенных панелей. Более того, стандарт разрешает смену поставщика защитного стекла без дополнительной сертификации. Для стекла толщиной 3,2 мм это не имело особого значения, но в случае более тонкого стекла, похоже, следовало быть разборчивее в выборе материалов.

Также специалисты отмечают, что технология закалки стекла даёт разное качество в зависимости от его толщины и присадок. Например, стекло должно быть относительно толстое, чтобы прогрев внутренней части был на заданном уровне. Для толстого стекла эти условия выдержать проще, чем для тонкого. В конечном итоге это вопрос затрат на изготовление. Если есть возможность сэкономить, то ею пользуются.

Наконец, снижение толщины стекла позволило облегчить каркас модулей, что увеличило нагрузку непосредственно на стекло. Это же касается используемых методов крепления (зажимов) фотопанелей к системам подстройки угла падения освещения и просто к стационарным стойкам. Производители панелей, со своей стороны, учитывают эти моменты (но не все), и выдают рекомендации по способам крепления и допустимым нагрузкам, но единой методики и стандарта нет. Поэтому в отрасли зреет необходимость пересмотра ряда стандартов, например, для тестирования панелей производителями и проведения новой сертификации.

В США проблему взялась решить Национальная лаборатория возобновляемой энергетики (NREL). Исследователи начали изучать случаи повреждений фотопанелей с анализа стёкол, их структуры, качества, химического состава и физических свойств. Задействовано специальное оборудование и прорабатываются научные методики, что обещает помочь с выработкой новых стандартов для проверки качества фотопанелей и их способности выдерживать механические нагрузки.

«Продукты меняются всё быстрее, и события опережать труднее, — сказала Ингрид Репинс, старший научный сотрудник группы надёжности фотоэлектрических систем NREL. — Эти треснувшие стёкла застали нас врасплох, хотя, я думаю, мы в какой-то степени знали, что в методиках тестирования были слабые места и пробелы. Теперь мы попытаемся понять первопричину и разработать тесты, чтобы подобное больше не повторилось. На данный момент у нас есть исследования, и у нас есть вопросы, но пока нет ответов».

Учёные научились собирать солнечное тепло в ёмкость с 800-градусной керамической пылью

Многолетние эксперименты с запасанием концентрированной энергии Солнца в высокотемпературных аккумуляторах позволили исследователям из Австралии найти интересное решение. Они отказались от традиционной в таких случаях системы на основе расплавов солей в пользу свободно падающей керамической пыли из частиц субмиллиметрового размера, чем сразу повысили температуру накопления с 600 до 800 °C.

 Источник изображений: CSIRO

Источник изображений: CSIRO

Опытная установка по сбору концентрированной солнечной энергии от отражений около 400 зеркал собрана в Ньюкасле (штат Новый Южный Уэльс) под патронажем Австралийской организации научных и промышленных исследований Commonwealth Scientific and Industrial Research Organisation, более известной как CSIRO. Это самая мощная солнечная термальная система в Южном полушарии и единственная в Австралии. Площадка служит для проведения экспериментов и не предназначена для коммерческой эксплуатации.

Четыре сотни зеркал фокусируются на небольшом рабочем объёме аккумулятора энергии наверху башни. Раньше команда исследователей CSIRO подбирала составы солевых растворов, которые плавятся под воздействием сфокусированных солнечных лучей и могут долго сохранять высокую температуру для каких-либо целей, например, для выработки электрической энергии или для прямого использования накопленного тепла.

Максимальная температура для расплавов солей, которой удалось достичь, не превышала 600 °C. Другие теплоносители показывали худший результат, обеспечивая нагрев до 400 °C. Между тем, повышение температуры теплоносителя позволило бы использовать накопленное тепло для целого спектра промышленных процессов вплоть до плавления металлов, что дало бы надежду когда-нибудь отказаться от сжигания ископаемых ресурсов для обеспечения энергоёмких производств.

Поэтому специалисты CSIRO перешли на эксперименты с керамическими теплоносителями, температура которых способна достигать 1000 °C. И не зря: было найдено решение, когда свободно падающие под действием земной гравитации и окрашенные в чёрный цвет керамические частицы субмиллиметрового размера пролетают сквозь пронизанное сфокусированными солнечными лучами пространство башни, нагреваясь до высочайших температур. Разогретые таким образом частички скапливаются в нижнем отсеке башни, где размещаются теплообменники. Частички держат нагрев в течение 15 часов и могут быть использованы в любой момент в течение этого времени.

В процессе оптимизации работы установки возникла проблема: частички керамики размерами меньше половины миллиметра постепенно опускаются, открывая дорогу солнечным лучам, которые насквозь просвечивают рабочий объём и ничему не передают свою энергию. Чтобы этого не происходило, пришлось создать систему желобов, которые подхватывают падающие частички и повторно распределяют их по рабочему объёму.

В ходе экспериментов удалось создать накопитель тепла с температурой носителя 803 °C. В перспективе разработчики намерены поднять эту температуру до 1000 °C.

За последние десять лет цены на солнечную энергию и аккумуляторы упали почти на 90 %

Шансы на скорейший отказ от ископаемых источников энергии достаточно высоки, завили немецкие климатологи после изучения динамики цен на киловатт возобновляемой энергии и батареи. Об этом сказано в свежей научной публикации Берлинского климатического института Mercator Research Institute on Global Commons and Climate Change (MCC), в которой сообщается о почти 90 % снижении цен за последние 10 лет как на солнечную энергию, так и на её накопители.

 Источник изображения: Pixabay

Источник изображения: Pixabay

«Некоторые расчеты даже позволяют предположить, что всё мировое энергопотребление в 2050 году может быть полностью и с минимальными затратами покрыто за счёт солнечных технологий и других возобновляемых источников энергии», — сообщает Феликс Кройтциг (Felix Creutzig), руководитель рабочей группы MCC по землепользованию, инфраструктуре и транспорту и ведущий автор исследования.

Учёные уточнили, что за последнее десятилетие стоимость солнечной энергии снизилась на 87 %, а стоимость аккумуляторных батарей — на 85 %. По мнению авторов исследования, такое снижение цен может сделать глобальный энергетический переход гораздо более жизнеспособным и дешёвым, чем предполагалось ранее. По крайней мере, такое будущее возможно, но оно потребует определённых усилий со стороны политиков и общества.

Научно-технический прогресс в технологиях производства возобновляемой энергии — рост КПД солнечной ячеек, увеличение их надёжности и снижение стоимости производства, а также массовое производство литиевых батарей на фоне также их массового производства для электромобилей привело к тому, что «зелёное» энергетическое оборудование стало более доступным для населения и компаний. Этому также способствовали льготы и субсидии со стороны местных властей.

В совокупности создаются условия для более быстрого снижения стоимости фотопанелей и батарей. Например, по сравнению с анализом двухгодичной давности, прогноз сокращения ценовой надбавки на аккумуляторы в 2030 году снижен со 100 % до 28 %.

Всё вместе позволяет строить новые модели для глобального энергетического перехода. Эти модели начнут проявлять себя в ближайшие годы и это может открыть неожиданный и более быстрый путь к углеродной нейтральности, построенной на экономике на основе возобновляемых источников энергии.

«Новые сценарные модели, некоторые из которых уже начинают изучаться, в обозримом будущем, вероятно, продемонстрируют, что глобальный климатический переход может оказаться не таким дорогим, как предполагалось ранее, и даже экономичным — при условии, что им наконец-то займутся», — резюмируют авторы работы, опубликованной в журнале Energy Research & Social Science.

Scania протестировала электротягач с питанием от солнечной фуры

Шведский автопроизводитель Scania представил первый в своём роде гибридный грузовик, оснащённый прицепом с десятками солнечных панелей, которые способны обеспечить энергию для преодоления до 10 000 км в год. Автомобиль уже успешно прошёл испытания на дорогах общего пользования, и теперь Scania надеется разработать подобную технологию для массового использования на коммерческом транспорте. Общая площадь солнечных панелей, размещённых на бортах и крыше прицепа длиной 18 метров, равна 140 м2.

 Источник изображения: Scania

Источник изображения: Scania

«Никогда раньше солнечные панели не использовались для выработки энергии для силового агрегата грузовика, — заявил руководитель исследовательского отдела Scania Стас Крупения (Stas Krupenia). — Этот природный источник энергии может значительно снизить выбросы в транспортном секторе».

Энергия, вырабатываемая солнечными панелями, обеспечивает грузовику запас хода до 5 000 километров в год в Швеции, хотя в странах с большим количеством солнечного света, таких как Испания, этот показатель удвоится. Исследователи полагают, что в дальнейшем выработку солнечной энергии можно будет увеличить вдвое за счёт использования новых перовскитных фотоэлементов.

«Наши исследования в области эффективных и лёгких солнечных элементов будут действительно важны, особенно когда дело дойдёт до их применения в будущих грузовиках, — говорит профессор физической химии Уппсальского университета Швеции Эрик Йоханссон, участвовавший в проекте. — Это захватывающий проект, в котором научные круги и промышленность вместе пытаются уменьшить воздействие грузовых перевозок на климат. Результаты использования этого уникального грузовика будут очень интересными».

Гибридный грузовик является частью усилий компаний и учреждений по всему миру, направленных на исследование способов перехода от транспортных средств, работающих на ископаемом топливе, к более экологичным решениям.

В прошлом году голландский стартап Lightyear продемонстрировал автомобиль на солнечной энергии, способный проехать сотни километров на одной зарядке. Описанный как «самый эффективный и экологичный» автомобиль в мире, Lightyear One уже доступен для предварительного заказа и, как ожидается, станет первым четырехколёсным автомобилем на солнечной энергии, способным перевозить более одного пассажира, который выйдет на рынок.

Китайские учёные создали стекло, которое само регулирует прозрачность и при этом вырабатывает и хранит энергию

В будущем стёкла с регулируемой прозрачностью станут необходимым элементом любого здания. И чем раньше будут разработаны такие стёкла с доступной стоимостью, тем скорее настанет этот момент. Китайские учёные пошли ещё дальше — они разработали стёкла, которые не только сами меняют прозрачность, но также сами себя обеспечивают питанием за счёт солнечных лучей.

 Источник изображения: Henan University

Источник изображения: Henan University

В одном прототипе исследователи из Хэнаньского университета объединили солнечную генерацию на основе тонкопленочных фотоэлементов из кестерита (CZTSSe) и электрохромное стекло на основе биметаллического оксида никеля-кобальта (NiCoO2). Представленный прототип не только реализует интеграцию функций самопитания и интеллектуальной регулировки уровня пропускания солнечного излучения, но и расширяет свои возможности до хранения энергии.

Учёные создали солнечный элемент на основе стеклянной подложки, покрытой молибденом (Mo), поглотителем из кестерита, буферным слоем на основе сульфида кадмия (CdS), слоем оксида цинка (ZnO), слоем оксида индия-олова (ITO), осаждённого методом магнетронного распыления, и с металлическими контактами из серебра (Ag).

Для получения электрохромных пленок NiCoO2 для окон использовалась простая технология химического осаждения из ванны (CBD). Благодаря пористой структуре нанохлопьев и синергетическому эффекту взаимодействия никеля и кобальта, пленки NiCoO2 и электрохромные «умные» окна на их основе показали отличные электрохимические, электрохромные и энергосберегающие характеристики.

Для накопления энергии в стекле в него была интегрирована плёнка оксида титан (TiO2). Она одновременно характеризуется отличными электрохромными свойствами (меняет прозрачность и (или) цвет при подаче электричества) и свойствами накапливать ионы.

При испытаниях в стандартных условиях освещённости подготовленное таким образом стекло (окно) показало энергопотребление 318,3 мВт·ч/м2 и общую эффективность 2,15 %, что, по мнению специалистов, сопоставимо с большинством разработанных на сегодняшний день окон с поддержкой фотовольтаики.

«В частности, благодаря пористой структуре массивов нанохлопьев и биметаллическому синергетическому эффекту электрохромные пленки NiCoO2 демонстрируют большую оптическую модуляцию, высокую скорость переключения, исключительную электрохромную стабильность, а также отличную скоростную способность», — пояснили разработчики. Иначе говоря, новые стёкла быстро меняли прозрачность в широком диапазоне пропускания света и удерживали её уровень длительное время. При этом тонировка стёкол была нейтральная, что будет приветствоваться большинством пользователей (обычно она различных оттенков).

Учёные подчёркивают, что главной своей задачей они видели использование минерала кастерита для производства умных стёкол. Он доступен, легко синтезируется из широко распространённых химических элементов и поэтому идеален для массового внедрения. Они продолжат работать над проектом, чтобы улучшить КПД стёкол и отработать массовое производство, хотя не обещают прийти к этому в сжатые сроки. Но возможность модулировать свето- и теплопередачу в помещении, одновременно вырабатывая энергию за счет фотоэлектрических элементов, несомненно является заманчивой для дальнейшей работ над этим направлением.

В США снова выделят бюджетные деньги на развитие местного производства солнечных панелей

Солнечная энергетика США на 90 % зависит от импорта фотоэлектрических панелей, преимущественно из Китая. Это расценивается как угроза национальной безопасности и исправление ситуации требует повышенного бюджетного стимулирования. Принятие нового закона об инфраструктуре предусматривает выделение $45 млн на целый спектр проектов в области возобновляемой солнечной энергетики от исследований до демонстраций и производства.

 Источник изображения: Panasonic

Источник изображения: Panasonic

От нового раунда финансирования законодатели ожидают помощи в дальнейшем снижении стоимости солнечной энергии, надеются увидеть разработку солнечных технологий следующего поколения и мечтают получить развитое производство солнечной энергии в США.

Исследовательские и демонстрационные проекты, запущенные в результате нового пакета финансирования, должны помочь в создании отечественного производства доступного оборудования для солнечной энергетики, увеличить долю компаний из США в стоимости этого оборудования, а также стимулировать отечественные технологические разработки, финансируемые налогоплательщиками.

Особое внимание должно уделяться инновационным продуктам или решениям, которые могут увеличить производство кремниевых фотоэлектрических элементов во всей цепочке поставок. Другие проекты ускорят разработку аппаратного обеспечения для фотоэлектрических систем «двойного назначения» в области совместного размещения солнечных ферм на сельскохозяйственных землях, создание плавучих фотоэлектрических систем, а также систем, интегрированных в транспортные средства и в здания.

Всего предусмотрено от 5 до 12 грантов на сумму от 1 до 10 млн долларов США. Отдельно будет приветствоваться совместная работа коммерческих структур и институтов. Система поощрений разделена на две большие области. Одна из них предусматривает финансирование 3–4 проектов стоимостью $1–10 млн каждый. В эту область включены проекты по увеличению производства фотоэлектрического кремния в стране и продукции на его основе по всей цепочке поставок. Сфера включает как работу с сырьём, так и разработку специального оборудования.

Вторая область относится к перспективным и «двойным» проектам, куда входит «сельскохозяйственная», плавающая, транспортная и фасадная фотовольтаика. В этой области министерство готово профинансировать 2–8 проектов стоимостью $1–1,6 млн каждый.

Долговечность солнечных панелей сильно преувеличена — они резко деградируют после 10 лет эксплуатации, выяснили учёные

Чешские учёные опубликовали работу, в которой сообщили о значительной переоценке срока эксплуатации солнечных панелей. Вместо обещанных 20–25 лет работы десятки солнечных ферм в стране показали резкую деградацию и повреждения уже на 11-м году эксплуатации. Инвесторы в солнечные проекты должны учитывать эти данные, иначе они окажутся обманутыми в своих ожиданиях рентабельности в сфере солнечной энергетики.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Как сообщает источник, данные мониторинга 85 солнечных электростанций, построенных в Чехии в 2009–2010 годах, показали, что главной причиной деградации фотопанелей стало расслоение. Проектировщики с самого начала не имели точных представлений о «технических возможностях» солнечных панелей, которые закупались для проектов, и давали завышенные обещания. Кроме того, ситуацию усугубило стремление получить больше прибыли на фоне экономии на строительстве.

«Срок службы электростанций, построенных в 2009–2010 годах, сегодня подошёл к концу, — сообщают исследователи. — В 2009–2010 годах ожидаемый срок службы фотоэлектрических электростанций в Чешской Республике составлял 20–25 лет. Сегодня, спустя примерно 12 лет, выяснилось, что эта оценка была слишком оптимистичной, а реальный срок службы составляет около половины [заявленного]».

В процессе анализа состояния фотопанелей на солнечных фермах учёные использовали одну и ту же систему мониторинга — Solarmon-2.0. По всем объектам получены очень похожие результаты. Информацию о производителях панелей они не раскрывают, но говорят, что закупки были осуществлены у компаний первого звена. Все изученные панели устанавливались под углом 35 градусов, и большинство их них было покрыто ламинатом EVA TPT.

К сокращению срока службы фотопанелей привела также экономия на рамах — они были ослаблены, как и сокращено расстояние между рамами и фотопанелями. Также панели соединяли последовательно для повышения напряжения, что внесло свой вклад в процессы деградации.

«После 11-го года производительность панели без обновления силоксанового покрытия (или другого ремонтного средства) снижается настолько, что её необходимо полностью заменить», — сказано в статье. Первые 10 лет, тем не менее, работа фотопанелей соответствовала заявленным характеристикам.

Исследователи также провели экономический анализ результатов, полученных с помощью данных мониторинга, и обнаружили, что установки по-прежнему прибыльны, хотя и с гораздо меньшей маржой, чем планировалось изначально.

«При нынешних относительно высоких ценах на электроэнергию (конец 2022 года) срок окупаемости электростанций опускается значительно ниже 10 лет, что в нынешней ситуации было бы достаточно для покрытия инвестиционных затрат, — сказано в заявлении. — Однако любое сокращение срока службы панелей приводит к снижению окупаемости этих инвестиций».

Эти выводы перекликаются с недавним исследованием учёных из Ганы, которые тоже нашли заявленные производителями сроки эксплуатации солнечных панелей заметно завышенными.

Развитие солнечной энергетики усилило дисбаланс между выработкой энергии днём и потреблением ночью

Управление энергетической информации США (EIA) сообщило, что по мере роста внедрения солнечной энергетики в Калифорнии углубляется так называемая «утиная кривая», что говорит об увеличении разрыва между пиковой выработкой в полуденные часы и пиковым потреблением в вечерние и ночные часы. Это создаёт критическую нагрузку на энергосистему и требует скорейшего решения.

 «Утиная кривая» — соотношение пиовой выработки солнечной энергетики в Калифорнии по отношению к потреблению электричества в течение сутокИсточник изображения: EIA

«Утиная кривая» — отношение выработки солнечной энергетики к потреблению электричества в течение суток. Источник изображения: EIA

Растущий дисбаланс усложняет задачу оператора (Калифорнийского независимого системного оператора, CAISO) по балансировке энергосистемы, что грозит авариями, отключениями и убытками для поставщиков электрической энергии. Всем очевидно, что с этим что-то надо делать. От возобновляемой и солнечной энергии в частности никто не собирается отказываться, а мощности на ископаемом топливе, как минимум, не планируют расширять. Выход из этой ситуации может быть только один — это массовая, если не повсеместная, установка резервных хранилищ для электричества. Энергия запасается в пик выработки, а в пик потребления, когда цены на электричество самые высокие, подаётся в сети.

В настоящее время дисбаланс устраняется за счёт регулярного оперативного вмешательства поставщиков энергии от мощностей на ископаемом топливе. Но в этом есть свои проблемы — это не даёт операторам время для согласования предложения и спроса. По крайней мере, в режиме реального времени это очень и очень сложно делать. Как итог операторы и поставщики несут убытки, а потребители рискуют оказаться без электричества.

Другим следствием разрыва между пиковой выработкой солнечной энергии в полуденные часы и пиковым вечерним потреблением стала практика отключения невостребованных мощностей. Так, по данным EIA, в 2020 году Калифорнийский независимый системный оператор (CAISO) ограничил выработку солнечной энергии коммунальными предприятиями на 1,5 млн. МВт·ч, что составило 5 % от общего объёма производства. И это происходило регулярно, отчего солнечная энергетика стала наиболее распространенным источником энергии в штате, который подвергался отключениям. По данным EIA, 94 % отключений мощностей в 2020 году связаны с солнечной энергетикой.

Своего пика отключения достигают в весенние месяцы, когда спрос относительно низок, а солнечная активность относительно высока. Например, в марте 2021 года в первые послеполуденные часы в среднем отключались мощности солнечной энергетики в объёме 15 %, о чём говорят цифры, предоставленные Министерство энергетики США.

Традиционные мощности по выработке электроэнергии также страдают, поскольку их круглосуточная работа становится нерентабельной и это может привести к их закрытию без замены на мощности на возобновляемой энергии.

Всё вместе взятое «открывает двери» для накопителей энергии, что станет дорогим удовольствием, но так необходимым для поддержки баланса энергосетей. Мощность аккумуляторных накопителей энергии в Калифорнии быстро выросла с 200 МВт в 2018 году до почти 5 ГВт сегодня. Согласно данным EIA, операторы планируют развернуть еще 4,5 ГВт накопителей в штате к концу текущего года, что говорит о том, что бум солнечной энергетики с батареями только начался. В то же время аналитики предупреждают, что подобные проекты станут окупаемыми не раньше 2038 года.

По данным аналитиков DNV, через 10 лет около 20 % солнечных проектов в мире будут строиться с использованием специальных накопителей, а к середине века таких проектов будет около 50 %. Это вынужденная мера и она сработает, хотя гражданам, как всегда, придётся заплатить за это из своего кармана. Да, и это касается не только Калифорнии. Такое происходит и будет происходить везде, где солнечной энергетике создают режим максимального благоприятствования не задумываясь о последствиях.

Немцы придумали фотопанель для недорогого производства зеленого водорода на крышах домов

Учёные из Технологического института Карлсруэ (KIT) вместе с коллегами из Канады разработали фотопанель для выработки водорода с помощью одного только солнечного света. Панели стоимостью до $22 за квадратный метр можно будет располагать на крышах домов или в виде солнечных ферм, но на выходе будет не электричество, а водород, синтетическое топливо или даже чистая вода, что будет зависеть от выбора фотокатализатора.

 Источник изображения: KIT

Источник изображения: KIT

Перед учёными стояло две задачи. Во-первых, они должны были придумать самый оптимальный для поглощения света фотореактор, ведь эффективность реакции в нём будет определяться количеством падающего солнечного света в течение суток. Кроме того, реактор должен быть из простых материалов и удобен для массового производства и эксплуатации. Проще говоря, учёные взялись решить сложную конструкторскую задачу, с чем они успешно справились.

 Лабораторная устанвока

Лабораторная установка

Во-вторых, необходимо было разработать эффективный фотокатализатор для проведения соответствующей химической реакции. Эта часть проекта пока не завершена. Кроме того, химические реакции могут быть разными, например, позволяя синтезировать в реакторе под воздействием света искусственное углеродное топливо, воздействуя на углекислый газ и воду. Наконец, можно получать в таких реакторах чистую воду, что найдёт поддержку в странах с засушливым климатом.

О результатах своего исследования учёные рассказали в журнале Joule. Статья свободно доступна для прочтения. Там же представлен чертёж фотореактора, который может служить отправной точкой для разработки коммерческих установок.

 Конструкция фотореактора

Конструкция фотореактора

В общем случае фотореактор производится из полимерных материалов, но для лучшего переотражения света к фотокатализатору в рабочую зону его поверхность покрывают алюминиевой фольгой или напылением. Согласно предварительным оценкам, стоимость каждого квадратного метра такой панели не будет превышать $22. Представители института изучают вопрос массового производства подобных фотопанелей.

Чего только не придумаешь, когда в стране официально запрещена ядерная энергетика.


window-new
Soft
Hard
Тренды 🔥
Самые полные издания Borderlands 3 и Diablo III добавят в Game Pass, а лучшая игра 2024 года по версии 3DNews подписку скоро покинет 9 ч.
«Эпический» сериал Netflix по Assassin’s Creed впервые за несколько лет подал признаки жизни 10 ч.
Спустя 10 лет после релиза Enter the Gungeon получит «крупнокалиберный сиквел» — первый трейлер и подробности Enter the Gungeon 2 12 ч.
Роскомнадзор порекомендовал отказаться от использования решения Cloudflare, нарушающего законы РФ 12 ч.
«Наш контент бесплатный, а инфраструктура — нет»: ИИ-боты разоряют «Википедию» 13 ч.
Nintendo поднимет цены на игры раньше Take-Two с GTA VI — Mario Kart World для Switch 2 будет стоить $80 в «цифре» и $90 в рознице 13 ч.
Роскомнадзор наделил себя правом собирать IP-адреса россиян 13 ч.
«Торт не был ложью!»: Nintendo подтвердила релиз Hollow Knight: Silksong в 2025 году и показала 5 секунд геймплея 14 ч.
Adobe придумала монтаж без пересъёмок: Premiere Pro 25.2 получил ИИ, который добавит ролику недостающие кадры 14 ч.
FromSoftware анонсировала мультиплеерный боевик The Duskbloods, который выглядит как смесь Elden Ring и Bloodborne — это эксклюзив Nintendo Switch 2 15 ч.