Опрос
|
реклама
Быстрый переход
Maxar предложила с помощью роботизированных зеркал направить свет в тёмные области Луны — для питания оборудования
04.07.2023 [13:01],
Руслан Авдеев
Аэрокосмическая компания Maxar представила разработку, которая с помощью специальных роботизированных зеркал позволит автономно перенаправлять солнечный свет для энергоснабжения оборудования с солнечными панелями на Луне. Это, например, позволит передавать энергию в области, скрытые в тени скал и кратеров спутника Земли. ![]() Источник изображения: Maxar Известно, что NASA поставила цель высадить астронавтов в районе лунного южного полюса в 2025 году в рамках программы Artemis. Лунный южный полюс богат ресурсами вроде водяного льда, но именно там солнечного света или нет подолгу, или он отсутствует совсем. В таких условиях производство энергии очень проблематично, перезарядить аккумуляторы и поддерживать работоспособность оборудования будет очень трудно, особенно с помощью солнечной энергии. Новый проект Maxar, известный как Light Bender предназначен для решения проблемы нехватки солнечного света с помощью системы автономных зеркал, которые будут автоматически отражать его туда, где будут находиться солнечные панели оборудования, даже в постоянно затенённых районах лунной поверхности. На первый взгляд, отражение солнечного света в тёмные области — процесс довольно простой, но усложняет его необходимость частой подстройки зеркал без участия людей. В компании сообщают, что никаких исследований возможного использования NASA автоматизированных технологий перенаправления света раньше не проводилось. Проект Light Bender предусматривает использование двух 10-метровых отражателей на 20-метровой телескопической мачте. Одно зеркало «отслеживает» Солнце, меняя своё положение таким образом, что свет отражается на второе, которое и перенаправляет лучи в сторону предполагаемого местонахождения солнечных панелей. Проект представляет собой плод сотрудничество Maxar и подведомственного NASA Исследовательским центром Лэнгли. Наземная демонстрация намечена на 2025 год. В мае 2023 года компания получила контракт в рамках программы NASA Announcement of Collaboration Opportunity (ACO). Само NASA отвечает за структурный дизайн конструкции, а Maxar займётся разработкой роботизированной составляющей. У Maxar уже имеется большой опыт в данной области. Например, именно эта компания стояла за разработкой роботизированной руки для марсохода Persevernace, а также имеет большой опыт в производстве спутников и разработке технологий орбитальной сборки. Ожидается, что автономные роботизированные системы сыграют ключевую роль в создании инфраструктуры для долговременного исследования Луны и других планет, поскольку обычные команды монтажников туда не доберутся. Кроме того, использовать роботов безопаснее, чем людей и это позволяет уменьшить состав команд. Artemis 3 должна стать первой миссией современных США с высадкой астронавтов непосредственно на лунную поверхность у местного южного полюса. Миссию планируют выполнить не раньше 2025 года. Тем временем Artemis 2 с облётами Луны кораблём с экипажем астронавтов, запланирована уже на ноябрь 2024 года. Фотоэлемент из Сингапура установил новый рекорд эффективности для перовскитных панелей — 24,35 %
24.06.2023 [15:33],
Геннадий Детинич
Учёные из Национального университета Сингапура (NUS) сообщили о взятии очередной планки в эффективности солнечных ячеек из перовскита. Одиночный элемент площадью 1 см2 показал КПД на уровне 24,35 %. Рекорд подтверждён независимыми экспертами и зафиксирован изданием Progress in Photovoltaics Research and Applications. ![]() Источник изображения: NUS Предыдущий рекорд для одиночных перовскитных фотоэлементов площадью 1 см2 составил 23,7 % КПД. Новая работа продвинула ячейку вперёд на неполный процент, но она оказалась намного интереснее по другому параметру — по надёжности работы в реальных, а не в лабораторных условиях. По крайней мере, так заявили разработчики. И дело вот в чём. Солнечные ячейки и перовскитные в частности создаются по двум основным схемам: обычной и инвертированной. Конструктивно они отличаются порядком чередования полупроводниковых слоёв. В случае обычной схемы сразу после стекла идёт электронно-проводящий слой, затем слой перовскита и сверху дырочно-проводящий слой. В инвертированной схеме дырочно-проводящий слой первым лежит на пути света, а электронный — последним. ![]() Источник изображения: OSSILA Самый высокий КПД показывали обычные ячейки, а самыми стабильными в работе были инвертированные. Сингапурские учёные смогли создать инвертированную перовскитную солнечную ячейку с КПД выше, чем у обычной. Тем самым они представили не только элемент повышенной эффективности преобразования света в электричество, но также обещают более долговечную его работу. Впрочем, исследователи из NUS пока разрабатывают технологию ускоренного старения своей ячейки, чтобы доказать гарантированную возможность её работы свыше 25 лет, без чего массовое производство даже не стоит затевать. Также учёные будут продумывать перенос технологии на производство ячеек большой площади. США в этом году от ветра и солнца получили больше электроэнергии, чем от угля
22.06.2023 [12:14],
Владимир Мироненко
Согласно предварительным данным Управления энергетической информации США (EIA), за первые пять месяцев этого года благодаря энергии солнца и ветра было произведено рекордное количество электроэнергии, превысившее объёмы генераций от угольных электростанций. Солнце и ветер сгенерировали 252 ТВт·ч электроэнергии, а уголь лишь 249 ТВт·ч с января по май включительно. ![]() Источник изображения: Wikipedia Согласно отраслевому изданию E&E News, впервые за всю историю наблюдений ветровая и солнечная энергетика превзошли угольную за период в пять месяцев. Если же учитывать гидроэлектроэнергию в числе возобновляемых источников энергии, то рекордный период длится более шести месяцев подряд, причём возобновляемые источники энергии опережают уголь по выработке электроэнергии, начиная с октября прошлого года, утверждает EIA. Для сравнения, ещё 10 лет назад угольные электростанции производили 40 % электроэнергии страны. «С точки зрения производственных затрат, возобновляемые источники энергии — ветер и солнечная энергия — самые дешёвые в использовании. Таким образом, нам предстоит наблюдать всё больше и больше таких рекордов», — отметил Рам Раджагопал (Ram Rajagopal), профессор гражданской и экологической инженерии в Стэнфордском университете. В течение многих лет угольная энергетика сокращалась, вытесняемая все более дешёвым природным газом. Но в прошлом году цены на природный газ подскочили после начала событий на Украине, и уголь начал отвоёвывать позиции, поскольку некоторые коммунальные предприятия в США и Европе заключили контракты на поставку электроэнергии с угольных электростанций. В 2022 году потребление угля достигло нового максимума во всем мире, однако в США восстановление его позиций было недолгим, поскольку здесь угольные электростанции планомерно выводятся из эксплуатации. В этом году в США уже закрыли шесть угольных энергоблоков. С вступлением в силу Закона о снижении инфляции, в рамках реализации которого выделяются миллиарды долларов на развитие экологически чистой энергии, использование возобновляемых источников энергии должно значительно вырасти. Но построить больше экологически чистых энергетических установок — это только полдела, говорит Раджагопал. Другая половина связана с подключением этих новых возобновляемых источников к национальной электрической сети, что занимает всё больше и больше времени. Согласно отчёту Национальная лаборатория им. Лоуренса в Беркли (LBNL), в среднем на то, чтобы проект по строительству ветряной, солнечной или гибридной электростанций, запущенный в эксплуатацию в 2022 году, был принят в коммерческую эксплуатацию, потребовалось пять лет с момента подачи запроса на подключение к сети. Для сравнения, у проектов, построенных между 2000 и 2007 годами, на эту процедуру уходило менее двух лет. По данным LBNL, сейчас в ожидании подключения к сети в стране находится более 10 000 проектов, способных обеспечить выработку 1350 ГВт электроэнергии. Китайские учёные добились рекордного КПД для тандемных солнечных ячеек из перовскита — 29 %
20.06.2023 [16:11],
Геннадий Детинич
Издание South China Morning Post сообщает, что учёные из Нанкинского университета создали самую эффективную в мире солнечную ячейку из двух слоёв перовскита. КПД новой ячейки достиг значения 29 %. Но самое интересное, что учёные создали компанию для начала массового производства перовскитных солнечных элементов, линии которой разовьют достаточную мощность уже к сентябрю этого года. ![]() Источник изображения: Nanjing University Группа китайских исследователей побила собственный рекорд, установленный в июне прошлого года. Тогда КПД тандемной перовскитной ячейки достиг 28 %. За год группа улучшила результат и теперь заявляет о достижении самой высокой в мире эффективности для данного типа ячеек — на уровне 29 %. Отметим, тандемные ячейки из перовскита и кремния показывают более высокие результаты. По последним данным — это 33,2 %. Тем не менее, тандемные ячейки из одного лишь перовскита, точнее, из двух соединённых друг с другом перовскитных плёнок, в перспективе обещают оказаться предпочтительнее иных вариантов. Перовскит при массовом производстве будет дешевле кремния. Китайцы, например, рассчитывают снизить цену на солнечные ячейки из перовскита в два раза по сравнению с кремниевыми. Кроме того, ячейки из перовскита можно выпускать по струйной технологии и делать их очень и очень тонкими, а это даст возможность наложить плёнку на поверхность едва ли не любой кривизны. Добиться рекордного КПД для тандемной ячейки из одного лишь перовскита учёные смогли благодаря оптимизации промежуточного слоя, который должен был быть максимально прозрачным и обладать максимально возможной проводимостью для электронов. Верхний слой перовскита в тандеме был подобран для поглощения более коротких длин волн солнечного света, а нижний — более длинных. Имитация длительного времени службы показала, что новые ячейки сохраняют эффективность на уровне 90 % после 600 часов непрерывной работы под солнечным светом. Для коммерческого продвижения разработки учёные создали стартап Renshine Solar. В этом году компания подписала соглашение о совместном промышленном проекте с правительством города Чаншу в провинции Цзянсу и построила производственную линию, которая должна достичь мощности 150 МВт уже к сентябрю (в новости не уточняет, но это скорее, годовая мощность производства). О перовскитных ячейках много говорят учёные, и было бы интересно увидеть их в живой природе. Исследование показало, что в массе солнечные панели деградируют значительно быстрее обещанных 25 лет
10.06.2023 [10:14],
Геннадий Детинич
Развёртывание солнечных ферм — это инвестиции в будущее. Эффект от немалых вложений в солнечные фермы проявит себя через многие-многие годы. И тем более досадно, что производители дают весьма завышенные оценки продолжительности эффективной работы солнечных панелей. Как показало новое исследование, в своей массе современные солнечные панели вырабатывают свой ресурс гораздо быстрее заявленных 25 лет. ![]() Измерение вольт-амперных характеристик фотопанели от одного из производителей в исследовании. Источник изображения: Energy Conversion and Management В статье в журнале Energy Conversion and Management группа учёных из Ганы исследовала 48 солнечных панелей от 12 производителей. Фотопанели были отобраны по 4 штуки от каждого бренда методом стратифицированной случайной выборки с ферм, проработавших в одинаковых условиях от 5 до 9 лет даже без частичного затенения. Все панели, уточним, это массовые недорогие фотоэлементы из поликристаллического кремния. У более дорогих фотопанелей из монокристаллического кремния результат, вероятно, будет лучше, но за редкостью использования они пока не могут формировать статистику. Также следует учитывать, что в Гане, где была проверена скорость деградации поликристаллических фотопанелей, жаркий и одновременно влажный климат, что могло сказаться на сокращении срока службы солнечных панелей. В целом оказалось, что фотопанели 11 производителей деградировали настолько быстро, что они выйдут из строя раньше 20 лет эксплуатации, не говоря об обещанных 25 годах гарантированной работы. Фотопанели 12-го производителя в целом деградировали в соответствии с заявленными характеристиками и могут считаться надёжными, хотя исследователи не могут утверждать о характеристиках иных партий фотопанелей этого производства. Поэтому, в частности, имена компаний-производителей фотопанелей держатся в секрете. Без глобального исследования было бы опрометчиво ругать одних и хвалить других. В исследовании участвовали образцы фотопанелей мощностью от 100 до 460 Вт. Во-первых, сначала был проведён визуальный осмотр образцов согласно методике, разработанной Национальной лабораторией возобновляемой энергии Министерства энергетики США (NREL). После этого каждая панель была проверена в работе с помощью тестера PV210 компании Seaward. Тестирование показало, что минимальная скорость деградации анализируемых модулей составила 0,79 % в год, а максимальная — 1,67 % в год. Скорость деградации модулей была разная: в диапазоне 0,78–1,95 % в год при средней и медианной скорости деградации 1,36 % в год и 1,38 % в год. Фотопанели только одного производителя деградировали менее чем на 0,8 % в год, в то время как модули остальных производителей деградировали более чем на 1,0 % в год. Это означает, что панели могут выйти из строя гораздо раньше 20 лет эксплуатации. Шесть модулей из 48, скорее всего, проработают больше 20 лет и только четыре — заявленные производителем 25 лет. При этом учёные отметили, что скорость деградации не зависела от возраста модулей. Одинаково быстро деградировали как более «молодые» панели, так и более «старые». В своей статье учёные подчеркнули, что по имеющимся у них данным, подобная скорость деградации поликристаллических солнечных панелей замечена исследователями в других странах. Было бы неплохо внести ясность в этот вопрос. Учёные предложили новый способ получения кислорода на Марсе с помощью солнечной энергии
09.06.2023 [17:56],
Матвей Филькин
Вопрос получения кислорода на другой планете до сих пор очень актуален. Новое исследование, проведённое Уорикским университетом, сравнивает традиционные генераторы кислорода с МКС и устройства на основе фотоэлектрохимических (PEC) элементов. PEC-системы могут создавать кислород из воды с помощью солнечного излучения без дополнительного питания и потенциально могут оказаться более надёжными на других планетах. ![]() Источник изображений: NASA Согласно исследованию, которое было опубликовано в журнале Nature на этой неделе, сборный генератор кислорода, который можно найти на МКС, достаточно хорош для выработки кислорода для станции, однако эти системы громоздки и склонны к поломкам. Для получения кислорода сборные генераторы используют процесс электролиза воды. Это довольно энергозатратный процесс, который потребляет 1,5 кВт энергии на МКС, что является значительной частью от 4,7 кВт, потребляемых всей системой управления жизнеобеспечением. Генератору необходима энергия, чтобы пропускать электрический ток через воду. Большим преимуществом фотоэлектрохимических систем является отсутствие необходимости в дополнительном питании. Для получения кислорода в PEC-системах используются полупроводниковые материалы, позволяющие расщепить воду на водород и газообразный кислород с помощью солнечной энергии. Это сделало PEC горячей темой среди исследователей устойчивой энергетики, так как данная технология может оказаться полезной и на Земле. Тем не менее, нет причин, по которым аналогичное оборудование не могло бы обеспечивать кислородом астронавтов. ![]() В новом исследовании изучалось, насколько жизнеспособны эти системы при их работе на Марсе и Луне. В результате учёные сошлись во мнении, что система сможет обеспечить кислородом человека, который будет работать в условиях микрогравитации. Однако они отметили, что нынешняя технология PEC должна стать более эффективной и компактной, прежде чем ею можно будет снабдить космический корабль. И вполне возможно, что её не придётся собирать на Земле. Поскольку каждый грамм, запущенный с Земли, стоит денег, аэрокосмические компании все больше интересуются использованием ресурсов на месте. Это означает, что миссия разрабатывается таким образом, чтобы использовать материалы в месте назначения, а не доставлять всё с Земли. Например, NASA изучает возможность применения марсианского грунта в качестве строительного материала, а многочисленные проекты исследуют возможности добычи водяного льда на Луне. В исследовании говорится, что «в конструкции устройства можно использовать различные полупроводники и материалы для электрокатализаторов, которые доступны на Луне и Марсе». Американцы первыми в мире передали собранную в космосе солнечную энергию на Землю
03.06.2023 [10:22],
Геннадий Детинич
Учёные из Калтеха сообщили о первой в мире успешной передаче солнечной энергии из космоса на Землю. Опытная орбитальная платформа передала микроволновое излучение на приёмник на крыше инженерной лаборатории в кампусе Калтеха в Пасадене, что доказало возможность получения чистой энергии из космоса. ![]() Модуль MAPLE изнутри. Разнесённые пустым пространством приёмник и передатчик энергии и светодиод, подтверждающий передачу энерегии. Источник изображения: Caltech Созданный в Калифорнийском технологическом институте демонстратор SSPD-1 (Space Solar Power Demonstrator) отправлен в космос в январе этого года в пакете запуска полезной нагрузки Transporter-6 компанией SpaceX. Это аппарат весом 50 кг на спутниковом шасси Momentus Vigoride компании бывшего владельца «Техносилы» российского бизнесмена Михаила Кокорича. Демонстратор SSPD-1 содержит три ключевых узла, каждый из которых призван испытать ту или иную технологию, связанную со сбором и передачей солнечной энергии из космоса на Землю. В настоящий момент Калтех сообщил об успешном испытании модуля MAPLE, который собирает солнечную энергию, преобразует её в микроволновое излучение и с помощью фазированной антенны направляет на приёмник на Земле. Также беспроводные приёмник и передатчик энергии установлены в самом модуле MAPLE. Это доказало возможность работы технологии в условиях открытого космоса. Собранная солнечными элементами на борту демонстратора энергия передавалась от одной стенки модуля до другой, и это можно было наблюдать по загорающимся внутри модуля светодиодам. Переданный и зафиксированный на Земле сигнал, очевидно, был очень и очень слабым даже для включения светодиода. Но в данном случае это было неважно. Главное, что принцип работы проверен практикой. ![]() Момент установки модуля DOLCE на платформу Два других модуля демонстратора SSPD-1 не менее важны в дальнейшем изучении технологий передачи солнечной энергии на Землю. Модуль ALBA содержит 22 различных типа фотоэлементов для оценки их работы в открытом космосе, а модуль DOLCE представляет собой конструкцию-оригами для развёртывания огромных массивов солнечных панелей в космосе. Носовая часть ракет-носителей ограничена по пространству для полезной нагрузки, и солнечные массивы до начала их сборки на орбите как-то надо будет очень и очень компактно укладывать. Надеемся, нам также покажут работу такого массива в составе демонстратора SSPD-1. Возможность передачи солнечной энергии на Землю позволит использовать чистую энергию в отдалённых местах и в зонах бедствий, куда обычная энергетическая инфраструктура либо не дотянется вовсе, либо будет разрушена. Этим направлением заняты все ведущие страны мира — опытных платформ на земле и в космосе будет всё больше и больше, включая российские. Солнце и ветер впервые покрыли весь спрос на электроэнергию в Бельгии
01.06.2023 [08:18],
Геннадий Детинич
Бельгийский оператор электросетей компания Elia сообщил, что в понедельник 29 мая солнечная и ветровая генерация впервые обеспечили достаточное количество электроэнергии, чтобы покрыть весь спрос на электричество в стране. Рекорд установлен между 13:00 и 13:30. И хотя ночью такое повторить пока невозможно, способность возобновляемой энергетики полностью заменить ископаемую впервые доказана на практике. ![]() Источник изображения: Pixabay Рекорд прошлого года был установлен 11 мая. Тогда солнечная и ветровая энергетика в сумме выдали 7112 МВт. Уже в этом году 28 мая был зафиксирован новый рекорд в выработке этими источниками — 7695 МВт. Наконец, 29 мая оператор отметил новый абсолютный рекорд генерации — 8303 МВт. Это было больше, чем на тот момент требовалось всем потребителям электроэнергии в Бельгии, отметили в компании. ![]() Источник изображения: Elia Солнечные панели внесли почти в два раза больше в рекордные показатели, чем ветровая генерация. Так, выработка электричества солнечными панелями составила 5500 МВт против 2803 МВт, полученных от ветрогенераторов. «Такие моменты, как этот, подчеркивают необходимость новой модели рынка, которая стимулирует гибкое потребление, — отметили в компании-операторе. — При такой модели потребители с гибкими приборами, такими как тепловые насосы и электромобили, смогут заряжать свои приборы, когда есть много дешевой, экологически чистой электроэнергии, одновременно помогая поддерживать баланс сети». Стартап SolarBotanic Trees представил «солнечные деревья» для зарядки электрокаров — они похожи на семиметровые грибы
31.05.2023 [15:35],
Матвей Филькин
Компания SolarBotanic Trees представила металлические деревья с семиметровой кроной, которые будут улавливать солнечную энергию через нанофотоэлектрические «листья» и хранить её в аккумуляторе, размещённом в стволе дерева. Накопленную электроэнергию предполагается использовать для зарядки электромобилей (EV). Недавно компания завершила создание первичного прототипа и теперь собирается построить и испытать полноразмерную версию. Коммерческое производство деревьев намечено на конец года. ![]() Источник изображений: SolarBotanic «В Великобритании существует огромный дефицит (зарядной) инфраструктуры, поэтому мы стремимся работать рука об руку с поставщиками инфраструктуры EV» — говорит Крис Шелли (Chris Shelley), генеральный директор SolarBotanic Trees. Ряд компаний уже предлагают навесы с солнечными батареями, которые располагаются над парковочными местами, однако они «эстетически непривлекательны». Солнечные деревья, ранее представленные в сингапурском парке Gardens by the Bay и в павильоне устойчивого развития на выставке Expo 2020 Dubai, могут предложить именно это. Помимо прочего, такие деревья занимают меньше места, поэтому их легче разместить в общественных местах. Стоимость одного дерева SolarBotanic ожидается в пределах от 18 000 до 25 000 фунтов стерлингов ($22 000 — 30 000), что значительно больше, чем у обычных солнечных батарей. Мощность зарядки от дерева составит пять киловатт, что типично для стандартной зарядной станции. При такой мощности зарядка автомобиля с 50-киловаттной батареей с 20 до 80% займёт почти семь часов. «Такая скорость зарядного пункта больше подходит для тех случаев, когда автомобиль простаивает в течение длительного времени» — говорит Рейчел Свитек (Rachel Swiatek), руководитель программы по транспорту в EST. Стартап также планирует разработать более компактную и доступную версию дерева на 3,2 киловатта, которая, будет стоить от 10 000 до 15 000 фунтов стерлингов ($12 000 — 18 000). Эта модель подойдёт для университетских кампусов, торговых центров и других мест. ![]() Каждое дерево получит систему хранения энергии и управления питанием, управляемую искусственным интеллектом, которая объединит несколько деревьев в локальные микросети или подключит дерево к общей сети, чтобы избыток произведённой энергии мог быть возвращён в сеть. Также дерево сможет отдавать энергию ночью или в тёмные зимние дни, когда нет солнечного света, подключаясь к электросети. Чтобы уменьшить зависимость от сети, стартап планирует интегрировать в ствол дерева систему аккумуляторов, чтобы избыток энергии в дневное время сохранялся для использования ночью. SolarBotanic Trees уже привлекла 340 000 фунтов стерлингов ($420 000) и собирается начать раунд финансирования в конце года после испытаний полномасштабного прототипа. К 2025 году компания хочет создавать не менее 1000 устройств в год. Первые солнечные деревья будут установлены в Великобритании, а затем в Европе и Северной Америке. Китай подключил к энергосети первую солнечную электростанцию «пустынного» кластера, что может привести к значительным геомагнитным аномалиям
29.04.2023 [15:02],
Геннадий Детинич
Китайские источники сообщили о включении в национальную распределительную сеть Китая первой очереди солнечных электростанций из так называемого «пустынного» кластера. В пустыне Гоби и других засушливых районах страны планируется развернуть до 450 ГВт солнечных и ветряных мощностей. Мощность первой подключенной к сети солнечной станции составила 1 ГВт. Электричество от неё будет передаваться в центральную китайскую провинцию Хунань по линиям повышенного напряжения, и это может иметь последствия. ![]() Где-то в песках Гоби. Источник изображения: CHINA NEWS SERVICE Проект «пустынных» электростанций предусматривает создание очень и очень протяжённых высоковольтных линий передачи электричества. Для снижения потерь на таких дистанциях было решено повысить передаваемое напряжение с 800 кВ до 1100 кВ. Для сравнения, на высоковольтных линиях передачи в США используется напряжение 500 кВ. Повышение напряжения сопровождается ростом напряжённости электромагнитного поля по маршруту и ведёт к геомагнитным аномалиям. Это может приводить к более частому возникновению гроз, изменению в картине магнитного поля Земли, сбоям в работе систем позиционирования и к искажению спутниковых данных. Особой ясности в этом вопросе нет. Китай станет первым, кто всё это испытает на практике. Оператором только что введённой в строй первой очереди электростанций является компания China Energy Investment Corp. Солнечная ферма мощностью 1 ГВт должна будет вырабатывать в год до 1800 ГВт•ч, что эквивалентно потребности в электроэнергии 1,5 млн домашних хозяйств, утверждают в компании. Проект предусматривает общую установленную мощность 13 ГВт и оценивается в 85 млрд юаней ($12,28 млрд). По данным NEA, установленная мощность возобновляемых источников энергии в Китае в первом квартале продолжала расти, достигнув 47,4 ГВт, что на 86,5 % больше, чем за аналогичный период прошлого года, и составляет 80,3 % от общей вновь добавленной установленной мощности. Новые установленные мощности в ветроэнергетике выросли до 10,4 ГВт, а солнечной энергетики — до 33,66 ГВт, сказано в сообщении. В первом квартале общая установленная мощность возобновляемых источников энергии в Китае достигла 1260 ГВт, включая 376 ГВт ветровой энергии и 425 ГВт фотоэлектрической энергии. Выработка электроэнергии из возобновляемых источников также постоянно увеличивается: национальное производство электроэнергии из возобновляемых источников достигло 594 700 ГВт•ч, что на 11,4 % больше, чем в прошлом году, в том числе 342 200 ГВт•ч ветровой и солнечной энергии, что на 27,8 % больше, чем годом ранее. TSMC неспешно перейдёт на питание от солнечных панелей
22.04.2023 [14:26],
Геннадий Детинич
Крупнейший в мире контрактный производитель чипов, тайваньская компания TSMC, обязался за 20 лет потребить 20 ТВт·ч электричества, выработанного солнечными панелями. Это поможет снизить выбросы парниковых газов при производстве «кремния», уровень которых огромен. По данным за 2021 год, одна только TSMC ежегодно выбрасывала в атмосферу свыше 16 млн т парниковых газов. Новый «зелёный» проект будет реализован совместно с компанией ARK Power. ![]() Источник изображения: Pixabay На деле красивые и круглые цифры оказываются несколько не тем, о чём говорят представители TSMC. Из ежегодно запланированных для потребления TSMC 1000 ГВт·ч «солнечного» электричества непосредственно компания будет покупать только половину — 500 ГВт·ч. Остальные 500 ГВт·ч будут закупать поставщики TSMC. Косвенно это тоже будет «озеленять» производство и продукцию TSMC. Тем более что утверждённая ООН климатическая инициатива «Научно обоснованные цели» (SBTi) в рамках уровня Scope3 предписывает сокращать выбросы во всей цепочке поставок. Закупать солнечную энергию TSMC и её поставщики будут на коллективной основе с разделением затрат на ремонт, модернизацию, обслуживание и прочее. Поставлять электричество будут фермы, которые ещё предстоит развернуть в следующие три года. По прогнозам компании ARK Power, проект должен привести к установке около 2 ГВт солнечных мощностей. «Благодаря этой инновационной модели совместных закупок возобновляемой энергии мы объединяем усилия с нашими отраслевыми партнёрами для продвижения устойчивой низкоуглеродной цепочки поставок полупроводников», — сказал в своем заявлении Джей Кей Лин (J.K. Lin), вице-президент по информационным технологиям и управлению материалами компании TSMC. ![]() Три уровня (сферы) ответственности компаний за выбросы парниковых газов Как и другие компании, TSMC стремится сделать производство углероднонейтральным к 2050 году. Для достижения этой цели ей необходимо заставить стать углероднонейтральными множество поставщиков, что выглядит сложной задачей. Подготовка сырья, транспортировка и само изготовление микросхем — это всё очень и очень энергоёмкие производства. Заявленные 1000 ГВт·ч — это капля в море, которые, к тому же, начнут поставляться не ранее, чем через три года. |