Опрос
|
реклама
Быстрый переход
В странных металлах электричество течёт как вода, и учёные не могут понять почему
02.12.2023 [16:36],
Геннадий Детинич
Загадочная физика так называемых странных металлов 40 лет ставит учёных в тупик. Проблески в понимании вопроса уже есть, но исследования продолжаются и открывают всё новые и новые необъяснимые свойства вещества. Свежее исследование показало, что электрический ток в странных металлах течёт с нарушением известной нам физики и учёные пока не понимают, почему это происходит. Странные металлы условно занимают промежуточное положение между диэлектриками и проводниками. У них уже есть свободные электроны, способные переносить электрический заряд (обеспечить течение тока), но они пока ещё не становятся проводниками в полном смысле этого слова. Начать понимать природу странных металлов помог синтез квантовой и классической физики. В то же время он показал, что тот же эффект электрического тока, например, мы понимали, скорее всего, неправильно. В основе современной теории электрического тока лежит перенос заряда квазичастицами, представленными коллективными действиями электронов. Дискретная природа электрического тока проявляется в случае так называемого дробного шума, когда ток в сети проявляется всплесками, а не в виде равномерного переноса заряда постоянной величины. Чтобы узнать, как ток течёт в странных металлах, учёные создали такие условия, чтобы можно было следить едва ли не за каждым электроном. В основе измерительного стенда лежали нанопроводники из соединения иттербия, родия и кремния (YbRh2Si2) шириной 200 нм и длиной 600 нм. Это соединение относится к странным металлам и, как и прочие странные металлы, обладает нетипичными свойствами вблизи абсолютного нуля. Если бы электрический ток тёк через этот материал так, как мы представляем — дискретно группами коррелированных электронов в виде квазичастиц, то ничего странного не произошло бы. Однако в ходе эксперимента учёные убедились, что ток продолжал течь плавно без свойственных дробному шуму флуктуаций как вода по широкому жёлобу. Говоря иначе, заряд отчасти передавался как будто без участия электронов, что представляется невероятным. Возможно, в металлах происходит всё то же самое, и носителем заряда служит нечто другое помимо электронов. Несомненно в этом проявляются квантовые эффекты, но каким образом, физикам ещё предстоит объяснить. Ответ на этот вопрос поможет приблизить открытие сверхпроводимости при обычной температуре, ведь одним из коренных свойств странных металлов является совершенно отличное от металлов поведение удельного сопротивления вблизи абсолютного нуля. У металлов оно меняется скачком от нуля до высокого, а у странных металлов вместо скачка оно растёт постепенно и линейно. Дотянуть бы его небольшим до высоких температур, и будет всем счастье в энергетике. Астрономы поймали частицу Аматэрасу с высочайшим уровнем энергии — она прилетела из пустой части Вселенной
24.11.2023 [13:02],
Геннадий Детинич
Учёные из коллаборации Telescope Array сообщили о регистрации «божественной» частицы, прилетевшей к нам из космоса. Поскольку частица прилетела из войда — из пустой области Вселенной — её источником может оказаться неизвестная нам физика, что делает открытие невообразимо ценным для учёных. Зарегистрированная энергия космической частицы достигла 244 эксаэлектронвольта (1018 электронвольт). Она стала одной из мощнейших по величине заряда из всех зарегистрированных нашей наукой. Первая подобная частица была детектирована в 1991 году, и её энергия составила 320 эксаэлектронвольт, за что она получила прозвище «Oh-My-God». В 1993 и 2001 годах были зарегистрированы ещё две частицы с энергиями, соответственно, 213 и 280 эксаэлектронвольт. Происхождение всех их остаётся невыясненным. Последняя частица была детектирована на установке Telescope Array утром 27 мая 2021 года, за что её потом назвали в честь японской богини Солнца Аматэрасу (в коллективе присутствовал японец). Телескоп TA представляет собой массив датчиков со сторонами около 700 км с шагом в 1,2 км. Считается, что космические частицы максимальных энергий прибывают на Землю с частотой менее одной в сто лет на 1 км2. И чем больше массив датчиков, тем выше вероятность засечь такую частицу. Саму частицу Аматэрасу массив датчиков увидеть не может. Она разрушается в атмосфере при столкновении с атомами в воздухе и создаёт ливень обломков — частиц с меньшими энергиями, которые, собственно, обнаруживают детекторы. Данные с датчиков позволяют восстановить параметры исходной частицы и дают информацию для расчёта её траектории. Узнать откуда она прилетела — это главная задача в таких исследованиях. Считается, что частицы с высочайшими уровнями энергии рождаются вне нашей галактики. Их источниками могут быть релятивистские процессы в чёрных дырах или невообразимые по мощности гравитационные возмущения. Наконец, причиной появления таких частиц может оказаться неизвестная нам физика вне рамок Стандартной модели. Частица Аматэрасу может оказаться одной из таких, поскольку она пришла из области Вселенной, где нет никаких видимых источников. Для учёных это редкая возможность буквально пощупать нечто неизвестное науке, и они обещают в полной мере воспользоваться этим. Учёные создали миллиметровый ускоритель электронов и планируют лечить им от рака «изнутри»
26.10.2023 [14:59],
Геннадий Детинич
Немецкие учёные из Университета Фридриха-Александра в Эрлангене и Нюрнберге (FAU) создали и испытали самый крошечный в мире ускоритель элементарных частиц. Длина вакуумной трубы, в которой происходит ускорение электронов, всего 0,5 мм, что в 54 млн раз меньше размеров другого ускорителя — Большого адронного коллайдера, который расположен на другом конце шкалы этих научных приборов. Но малютка нужна не для науки. Она необходима для медицины и не только. Учёные хотели бы увидеть свой прибор в качестве инструмента для борьбы с опухолями внутри тела человека. Это была бы намного более щадящая терапия, чем традиционная радиационная. Крошечный ускоритель мог бы располагаться на конце эндоскопа и стать своеобразным оружием в борьбе с этим смертельным заболеванием непосредственно на месте. Идея миниатюрного ускорителя электронов или нанофотонного ускорителя электронов (NEA), как назвали его учёные, была предложена в 2015 году. Кроме учёных из Германии свой нанофотонный ускоритель электронов создали исследователи из Стэнфордского университета. Однако учёные из Университета им. Фридриха-Александра первыми прошли этап рецензирования статьи и сообщили об успехе в журнале Nature. «Впервые мы действительно можем говорить об ускорителе частиц на [микро]чипе», — поделился достижением соавтор исследования физик из FAU Рой Шилох (Roy Shiloh). В микроскопической вакуумной трубке ускорителя диаметром всего 225 нм, что многократно тоньше человеческого волоса, содержатся тысячи отдельных «столбиков», на которые направляются лазерные импульсы соизмеримой мощности. Импульсы возбуждают в гребёнке электромагнитное поле, которое и ускоряет электроны. Представленный экземпляр ускорителя разгоняет электроны всего на 43 %, придавая им энергию 40,7 кэВ с изначальных 28,4 кэВ (килоэлектронвольт). Для практических целей этого мало, но учёные находятся только в начале пути и рассчитывают создать ускорители с более высокими энергиями, хотя до БАКа, конечно же, они не дотянутся. Но будет любопытно наблюдать, как приборы из фундаментальной физики начнут проникать в повседневную жизнь. Это ли не фантастика? Нобелевскую премию по физике присудили за аттосекундные световые импульсы
03.10.2023 [16:27],
Павел Котов
В 2023 году Нобелевская премия по физике присуждена Анн Л'Юилье (Anne L’Huillier), Ференцу Краусу (Ferenc Krausz) и Пьеру Агостини (Pierre Agostini) «за экспериментальные методы генерации аттосекундных импульсов света для изучения динамики электрона в материи». Шведская королевская академия наук подчеркнула заслуги этих учёных в генерации коротких световых импульсов, которые помогут в изучении электронов — в этом масштабе события происходят за несколько десятых долей аттосекунды, или 10-18 с. В одной секунде столько же аттосекунд, сколько секунд прошло с момента рождения Вселенной. Лауреатам удалось создать аттосекундные импульсы, которые помогут фиксировать изображения процессов внутри атомов и молекул — «открыть дверь в мир электронов», как выразилась глава нобелевского комитета по физике Ева Олссон (Eva Olsson). На практике эти импульсы окажутся полезными в электронике и медицине. Анн Л'Юилье служит профессором физики в Лундском университете (Швеция). В 1987 году она открыла образование обертонов света при прохождении инфракрасного лазерного излучения через инертный газ — лазер сообщает электронам дополнительную энергию, которая излучается в виде света. В 2003 году это открытие помогло профессору сгенерировать рекордно короткий импульс продолжительностью 170 аттосекунд. Пьер Агостини из университета штата Огайо (США) в 2001 году запустил серию импульсов продолжительностью по 250 аттосекунд. Ференц Краус, работающий в Мюнхенском университете имени Людвига и Максимилиана (ФРГ) сгенерировал и измерил первый в истории искусственный аттосекундный импульс, положивший начало аттофизике — его продолжительность составила 650 аттосекунд. У антиматерии нет антигравитации — эксперимент подтвердил столетнюю теорию Эйнштейна
29.09.2023 [11:22],
Геннадий Детинич
Эксперимент на установке ALPHA-g в ЦЕРН позволил ответить на вопрос, как гравитация воздействует на антиматерию. Более ста лет назад на этот вопрос теоретически ответил Эйнштейн, но экспериментально подтвердить его слова учёные смогли только сейчас. К сожалению или к счастью, чуда не случилось. Эйнштейн оказался прав. Гравитация примерно одинаково воздействует как на материю, так и на её физически зеркального двойника с противоположным зарядом — антиматерию. Почему примерно? Поставленный эксперимент не дал достаточно точных измерений. Следующая модернизация установки ALPHA-g позволит на два порядка повысить точность измерений, и тогда можно будет говорить о значимых для расчётов значениях. Точное знание о том, как гравитация воздействует на антиматерию, может стать толчком к развитию тех или иных гипотез об эволюции вещества во Вселенной. Пока в этом есть великая тайна. Примерно 13,4 млрд лет назад произошёл Большой взрыв, в ходе которого в пространстве-времени возникло поровну материи и антиматерии. В теории вещество и антивещество должно было аннигилировать при столкновении друг с другом и это привело бы к исчезновению зародыша Вселенной вскоре после его рождения. Но всё, что мы видим вокруг опровергает такой сценарий, иначе нас не было бы тоже. Из сказанного выше следует, что вещество и антивещество могут в чём-то неуловимо для нас отличаться по ряду физических свойств, а не только по знаку заряда. Например, это могло бы быть в отношениях с гравитацией. Если бы она по-разному воздействовала на материю и антиматерию, то это могло бы объяснить, почему после рождения вещества и антивещества не произошло их взаимного уничтожения — гравитация просто развела бы их по разным углам ринга. Воздействие гравитации на вещество на уровне системных экспериментов провёл Галилей, роняя предметы с вершины Пизанской башни. С антивеществом такое провернуть нельзя. Его можно получать на ускорителях, но на уровне сотен атомов. И всё же, даже такого мизерного количества антиматерии оказалось достаточно для оценки воздействия на него земной гравитации. В эксперименте на установке ALPHA-g учёные собирали в вертикально расположенной ловушке атомы антиводорода. Система магнитов компенсировала электромагнитные поля, на фоне которых воздействие гравитации вообще не было бы заметно. После накопления в ловушке около сотни атомов антиводорода ловушка открывалась, и атомы покидали её вверх и вниз. Подсчёт упавших вниз атомов и оценка их характеристик, включая скорость падения (всё это — по косвенным измерениям в процессе аннигиляции материи и антиматерии), позволили определить постоянную свободного падения антиводорода. Она оказалась равна 9,8 м/с2 — как и у обычного вещества. Чтобы окончательно убедиться в одинаковом воздействии гравитации на вещество и антивещество точность измерения будет постепенно увеличиваться, что позволит отбросить массу альтернативных теорий взаимодействия гравитации и антиматерии. В США создан самый мощный в мире рентгеновский лазер — с его помощью можно снять кино о жизни молекул и атомов в реальном времени
19.09.2023 [13:06],
Геннадий Детинич
Учёные получили самый мощный в мире рентгеновский лазер — установку LCLS-II на базе американской Национальной ускорительной лаборатории SLAC. Длившаяся около десяти лет модернизация лазера LCLS тысячекратно умножила его мощность и возможности. Частота вспышек выросла до одного миллиона раз в секунду. Это означает, что учёные в реальном времени смогут снимать «фильмы» о поведении молекул и атомов в материалах, что позволит открывать секреты мироздания. Установка LCLS, или первый в мире рентгеновский лазер на свободных электронах, начал работать в SLAC в 2009 году и обладал частотой до 120 рентгеновских импульсов в секунду. Установка представляла собой медный волновод, находящийся в обычных комнатных условиях. Короткие и относительно мощные рентгеновские импульсы, получаемые как вторичные после разгона электронов, бомбардируют исследуемый образец и дают картину его молекулярного и атомарного устройства. Чем выше энергия импульсов и их частота, тем точнее картина, вплоть до съёмки поведения молекул и атомов в реальном времени. Новая установка получила криогенные ускорители электронов. Впрочем, старая установка с медной трубой также сохранена и будет принимать участие в новых экспериментах наряду с новой. Это позволит получать данные в расширенном диапазоне энергий, что обеспечит более полный набор данных для опытов. Однако разница между ними колоссальная: частота лазерных импульсов у новой установки в 8000 раз выше, чем у старой. Это обеспечит слежение за очень и очень быстрыми процессами в материалах и химических реакциях. Это особенно важно для квантовых исследований, которые обычно контринтуитивны или, если проще, непредсказуемы. Учёные давно ждали этот инструмент и сейчас выстроились в очередь для проведения на LCLS-II научных работ, которые стартуют в ближайшие недели. Установка востребована в материаловедении, в квантовых науках, в биохимии, в фармакологии, в геологии и в массе других областей, где детальное знание происходящих химических процессов и строения веществ играет первостепенную роль. Научный мир на пороге новой эры в открытиях, и это не пустые слова. В России, кстати, для аналогичных исследований строится комплекс «СКИФ» и ряд установок поменьше. Но это уже другая история. Природа обманула магию физики: дважды магический и самый тяжёлый изотоп кислорода оказался нестабильным
02.09.2023 [14:33],
Геннадий Детинич
Японские учёные первыми в мире синтезировали самый тяжёлый изотоп кислорода-28 (28O). На удивление исследователей, изотоп 28O сразу же распался, что противоречит теориям Стандартной модели. Это подрывает основы наших знаний о мироздании — о сильном ядерном взаимодействии элементарных частиц, чему теперь предстоит найти объяснение. Самая распространённая на Земле форма изотопа кислорода — это кислород-16. Кислород-28 должен иметь на 12 нейтронов больше, но его до сих пор никто не смог синтезировать. Это удалось сделать учёным из Токийского технологического института. После серии ядерных преобразований на установке Riken RI в Вако (Япония) отсеянный спектрометром изотоп фтора-29 с девятью протонами направили на мишень из жидкого водорода. После столкновения водород и 29F потеряли по одному протону и образовали молекулу изотопа кислорода-28. Впрочем, о появлении 28O учёные смогли судить лишь косвенно, по следам его распада. Вопреки предсказаниям теории, он разрушился чрезвычайно быстро — через зептосекунду (10-21 с). Стандартная модель представляла, что изотоп кислорода-28 сможет существовать практически вечно, настолько он должен был оказаться стабильным. «Это открывает очень, очень большой фундаментальный вопрос о самом сильном взаимодействии в природе — ядерной силе, — прокомментировал открытие изданию New Scientist Ритупарна Канунго, физик из Университета Святой Марии (Канада), не принимавший участия в эксперименте. Стандартная модель утверждает, что частицы будут стабильными, если оболочки в ядре атома заполнены определенным числом протонов и нейтронов, которое называют «магическим» числом. Кислород-28 содержит 20 нейтронов и 8 протонов — оба числа являются магическими, что заставляло предположить, что эта молекула должна была быть чрезвычайно стабильной или «дважды магической». Однако этого не произошло. О синтезе 28O учёные узнали по продуктам его распада, который произошёл, по-видимому, за два этапа. В конечном итоге остался изотоп кислород-24 и четыре нейтрона. «Я был удивлен, — сказал в интервью Nature Такаши Накамура, физик из Токийского технологического института и соавтор исследования. — Лично я думал, что это двойная магия. Но природа сказала своё слово». Хотя эксперимент ещё не был воспроизведен в других лабораториях, результаты исследования позволяют предположить, что существующий список магических чисел может не давать полной картины того, насколько стабильны молекулы. В частности, ещё в 2009 году учёные показали, что изотоп кислорода-24 ведёт себя так, как будто он дважды магический, хотя у него нет магического числа протонов и нейтронов в оболочке. Подобные загадки имеют особую ценность для науки. Они указывают цель, к которой надо двигаться дальше. Учёные научились синтезировать тетратенит — метеоритный сплав, который может заменить редкоземельные металлы и изменить мир технологий
28.08.2023 [19:51],
Дмитрий Федоров
В поисках альтернативы редкоземельным металлам — ключевым компонентам современных технологий — учёные обратили внимание на тетратенит. Это редкий сплав, впервые найденный в метеорите, который может стать революционным решением для производства электроники и современной техники, и даже предложить альтернативу редкоземельным металлам. Учёным удалось искусственно синтезировать данный сплав. 27 июня 1966 года над городом Сент-Северен во Франции пронёсся метеорит весом 113,4 кг, который вскоре упал на землю, оставив после себя воронку глубиной около 61 см и шириной 76 см. Исследователи из Национального музея естественной истории Франции (NMNH) обнаружили в этом метеорите редкий металл — тетратенит. Тетратенит — это металл с тетрагональной структурой, состоящий из тенита, сплава никеля и железа. Его свойства схожи со свойствами редкоземельных металлов, используемых для создания мощных магнитов, которые применяют в потребительской электронике, электромобилях, военной технике и системах возобновляемой энергетики. «Редкоземельные металлы идут в абсолютно жизненно важные сегменты промышленности и технологий. Они являются ключевыми компонентами для вычислительной техники, а также для всех новых технологий, которые служат топливом или поддержкой энергетического перехода», — заявил Ариэль Коэн (Ariel Cohen), старший научный сотрудник Атлантического совета (Atlantic Council). В 2022 году команда из Университета Кембриджа (University of Cambridge) под руководством Линдси Грира (Lindsay Greer) объявила о синтезе тетратенита из железа и никеля — одних из самых распространённых металлов на Земле. Этот искусственно созданный металл может заменить редкоземельные металлы, такие как неодим и празеодим, в будущем. Почти одновременно с этим инженеры из Северо-Восточного университета (NEU) в Бостоне также заявили о своём методе производства тетратенита. Их метод, разработанный под руководством доктора философии и профессора химического машиностроения Лоры Льюис (Laura Lewis), был аналогичен методу Грира, но с одним отличием: в процессе охлаждения расплава команда Льюис применяла «экзистенциальное напряжение», что позволило атомам внутри образовать тетрагональные структуры, характерные для тетратенита. Спрос на редкоземельные металлы растёт, а их добыча происходит только в нескольких местах в мире и связана с экологическими рисками. Китай контролирует 70 % мирового производства редкоземельных металлов и угрожает сократить его поставки недружественным странам. Однако благодаря исследованиям учёных, которые синтезировали тетратенит, этот металл может стать реальной альтернативой редкоземельным металлам и предложить экологически чистую альтернативу. Льюис подчёркивает: «Это больше, чем просто дефицит. Потому что методы, необходимые для переработки добываемой из земли руды, действительно экологически опасны, я бы сказала, даже вредны». Промышленное производство тетратенита остаётся сложной задачей, которую учёные пока ещё только пытаются решить. Несмотря на значительные успехи в лабораторных условиях, на данный момент исследовательские группы, включая команду Грира и Льюис, способны получать лишь микроскопические количества этого уникального металла. Грир с оптимизмом смотрит в будущее, но также признает, что путь от лабораторных экспериментов до массового производства тетратенита ещё долог и требует дополнительных исследований и инноваций. Тетратенит может стать ключом к созданию более устойчивого и экологически безопасного будущего в области производства электроники и технологий. Если учёные смогут преодолеть технические препятствия, связанные с его производством, этот металл может изменить глобальные цепочки поставок и уменьшить зависимость от редкоземельных металлов. Возможно, ответ на наши технологические и экологические вызовы пришёл прямо из космоса. Учёные нашли объяснение «странным металлам», которые 40 лет ставили науку в тупик
18.08.2023 [12:34],
Геннадий Детинич
Свыше 40 лет физики не могли объяснить поведение «странных металлов», которые при сильном охлаждении вели себя не так, как обычные металлы. Если в обычных металлах возникала сверхпроводимость и мгновенно исчезала на какой-то чёткой температурной отметке, то сопротивление странных металлов при изменении температуры менялось линейно. Этому не было внятного объяснения, пока это недавно не сделали физики из США. Комплексное обоснование теории поведения странных металлов — металлов, которые не подчиняются теории ферми-жидкости, — сделали руководитель проекта Аавишкар Патель (Aavishkar Patel) из Центра вычислительной квантовой физики (CCQ) Flatiron Institute в Нью-Йорке и физики Хаоя Гуо, Илья Эстерлис и Субир Сачдев из Гарвардского университета. Как минимум, учёные обосновали ряд характерных свойств «странных металлов». Стройная теория может помочь ответить на вопросы о достижении сверхпроводимости при высоких температурах и помочь в разработке квантовых компьютеров. Квантовая механика стала тем инструментом, который помог разобраться в вопросе. Новая теория опирается на два ключевых свойства странных металлов. Во-первых, электроны в таких металлах могут запутываться друг с другом — переходить в абсолютно идентичные квантовые состояния — и оставаться в таком состоянии даже при удалении на значительные расстояния друг от друга. Во-вторых, странные металлы имеют неоднородное, похожее на лоскутное, расположение атомов. «Ни одно из этих свойств по отдельности не объясняет странности “странных металлов”, но в совокупности всё становится на свои места», — пояснил глава проекта. Неравномерность атомной структуры странного металла означает, что запутанность электронов зависит от того, в каком месте материала она произошла. Такое разнообразие вносит хаотичность в импульс электронов при их движении через материал и взаимодействии друг с другом. Вместо того чтобы течь вместе, электроны сталкиваются друг с другом во всех направлениях, что приводит к электрическому сопротивлению. Поскольку электроны сталкиваются тем чаще, чем горячее материал, электрическое сопротивление растёт вместе с температурой, что и наблюдается на практике. Там где у обычных металлов происходит скачок при переходе от сверхпроводимости к резкому увеличению сопротивления, странные металлы продолжают пропускать ток с плавным увеличением сопротивления току. Ключевым в новой теории стало то, что физики объединили два явления — запутанность и неоднородность, что раньше не рассматривалось для одного материала, а по отдельности это не приводит к странному поведению металлов. Тем самым учёные предлагают механизм по коррекции условий сверхпроводимости в странных металлах. Искусственно созданные неоднородности могут воспроизвести сверхпроводимость в нужном месте с заданными целями, что может найти применение, например, в квантовых вычислителях. Когда вы можете на что-то влиять, это способно привести к желаемому результату. «Бывают случаи, когда что-то хочет перейти в сверхпроводящее состояние, но не может этого сделать, поскольку сверхпроводимость блокируется другим конкурирующим состоянием, — говорит Патель. — Тогда можно задаться вопросом, не может ли присутствие этих неоднородностей разрушить эти другие состояния, с которыми конкурирует сверхпроводимость, и оставить дорогу для сверхпроводимости открытой». Учёные обнаружили предсказанную 67 лет назад частицу-демона, которая поможет искать сверхпроводники
17.08.2023 [11:48],
Геннадий Детинич
Группа учёных из США в серии экспериментов с отдалённо похожим на сверхпроводящие материалы рутенатом стронция случайно обнаружила квазичастицу, предсказанную 67 лет назад. Квазичастица под именем «демон Пайнса» не имеет массы и нейтральна, а значит, напрямую себя не обнаруживает. Между тем, свойства частицы-демона могут помочь в определении сверхпроводимости, природа которой до сих пор до конца не изучена. Открытие «демона» может многое изменить. Современная теория сверхпроводимости в основном опирается на тесные взаимодействие электронов и фононов в атомарной структуре материалов. В то же время ряд проявлений сверхпроводимости плохо согласуется с этой теорией и оставляет место для экзотических и пока не открытых процессов. Квазичастица демон Пайнса — одно из таких явлений, которое почти 70 лет считалось игрой ума физика Дэвида Пайнса, который предложил её в 1956 году. По его мнению, это безмассовая и нейтральная квазичастица, обнаружить которую по этой причине очень и очень трудно. Её и не искали, если честно. Физики из Иллинойского университета в Урбане-Шампейне обнаружили неуловимую квазичастицу совершенно случайно. Они изучали свойства рутената стронция, который не является сверхпроводником, но в ряде аспектов очень сильно его напоминает. Рутинные измерения показали наличие «частиц», которые не были ни поверхностными плазмонами, ни акустическими фононами. Первые результаты измерений были приняты за ошибочные, и лишь их повторение заставило плотнее заняться вопросом: а что это было? Моделирование показало, что учёные обнаружили плазмон со свойствами, предсказанными Дэвидом Пайнсом. Это особое коллективное движение электронов в твёрдом теле. По сути — это дискретная волна или групповое колебание в электронной плазме. Это не частица в чистом виде, поэтому такие конденсированные явления называют квазичастицами. Данные измерений показали, что обнаруженный плазмон не имеет массы и нейтрален по заряду. Иначе говоря, он отвечает требованиям демона Пайнса. Слово «демон» в данном случае означает «отчетливое движение электрона» с любимым физиками суффиксом «-он». В отличие, скажем, от демона Максвелла, который действительно демон при рогах и копытах, хоть и воображаемый. Наличие в природе демона Пайнса в виде безмассовой частицы означает потенциальную возможность эффекта сверхпроводимости при любой температуре. Этой частицей можно попытаться объяснить сверхпроводимость в целом списке полуметаллов. Понять и объяснить означает открыть новые пути к осуществимости этого явления, что сделает наш мир чуть более приятным местом для жизни. Звук действительно передаётся в вакууме, но совсем не так, как показывают в кино
16.08.2023 [14:29],
Геннадий Детинич
Два финских физика выяснили условия, при которых звук может передаваться через идеальный вакуум. Эффект сродни квантовому туннелированию, но в дело вступает обычная физика и кое-какое оборудование. Открытие может помочь в разработке MEMS-электроники и в системах теплоотвода. Жуоран Генг (Zhuoran Geng) и Илари Маасилта (Ilari Maasilta) из Университета Ювяскюля (Финляндия) утверждают, что их работа отражает первое строгое доказательство полного акустического туннелирования в вакууме. Всё, что нужно для эксперимента, — это два пьезоэлектрических датчика, каждый из которых способен превращать звуковые волны в электрическое напряжение (и наоборот). При этом пьезоэлементы должны быть разделены зазором, меньшим, чем длина волны передаваемого звука. В результате звук «перейдёт» от одного элемента к другому с полной силой, если соблюсти необходимые условия. Как мы знаем, для распространения звука необходима среда. Звук передаётся за счёт последовательной передачи колебаний атомов и молекул среды соседним частицам. Непосредственно люди слышат (ощущают) колебания воздуха чувствительной мембраной в ушах. Таких условий, очевидно, нет в чистом вакууме — там нечему колебаться и, следовательно, нечему распространять звуковые волны. Но есть лазейка — в вакууме могут распространяться электромагнитные поля, а это шанс для пьезоэлектрических кристаллов, которые в процессе деформации (под воздействием акустических волн) вырабатывают электричество. А где электричество, там и поля. Учёные использовали в качестве пьезоэлементов оксид цинка. Звуковое колебание создавало механическое напряжение в материале, и это порождало в нём электрическое напряжение и, при определённых условиях, вело к появлению электромагнитного поля. Если в радиусе действия поля первого кристалла находился второй кристалл, то он преобразовывал поле в электрическую энергию и обратно в механическую — фактически в исходный акустический сигнал, который, таким нехитрым (или хитрым) образом преодолевал чистый вакуум. Ширина зазора при этом не должна превышать длины передаваемой звуковой волны. Также учёные показали, что эффект не зависит от частоты звука. При соблюдении необходимого зазора он работает и для ультразвука и для сверхзвуковых частот. Обнаруженное явление может использоваться как для практических решений, так и для имитации квантового туннелирования, чтобы помочь в развитии квантовой связи, например. «В большинстве случаев эффект невелик, но мы также обнаружили ситуации, когда полная энергия волны переходит через вакуум со 100 % эффективностью, без каких-либо отражений, — рассказал Маасилта. — Таким образом это явление может найти применение в микроэлектромеханических компонентах (MEMS, технология смартфонов) и в управлении теплом». В последнем случае, очевидно, учёный имеет в виду отвод тепла от приборов, находящихся в вакууме, что может найти применение в космической технике и не только. О самой работе учёные рассказали в статье в журнале Communications Physics. Американские учёные приблизились к открытию пятой силы природы — неизвестного науке поля или элементарной частицы
11.08.2023 [13:45],
Геннадий Детинич
Физики из Fermilab представили результаты эксперимента по измерению аномалии магнитного момента мюона (АМММ) — крайне нестабильной элементарной частицы. Набор данных двух наблюдений показал достоверно значимые отклонения в измеренных параметрах АМММ, природу которых нельзя объяснить в рамках Стандартной модели физики элементарных частиц. Это означает, что на магнитный момент мюона влияет нечто науке неизвестное. Мюон нестабилен, но он очень массивен — в 207 раз тяжелее электрона. И если такая тяжёлая штука имеет магнитный момент, то следить за ним и измерять его будет проще, чем в случае детектирования магнитного момента электрона, а аномалию магнитного момента электрона учёные смогли измерить с высокой точностью. Но с электроном всё просто. Источник его аномалии магнитного момента известен — это взаимодействие с квантами электромагнитного поля — и это отклонение согласуется с теоретическими выкладками. Что касается аномалии магнитного момента мюона, то она не находит объяснения в рамках Стандартной модели. Помимо известных нам полей и частиц магнитный момент мюона отклоняет что-то такое, о чём современная физика не имеет представления. Если бы учёные смогли измерить это неизвестное воздействие с достаточной точностью — банально показать, что оно существует, то это открыло бы путь в так называемую Новую физику, поскольку означало бы присутствие в природе неизвестных сил (полей) или элементарных частиц. Тяжёлый мюон идеален для проведения таких экспериментов и свежие данные учёных из Fermilab — это один из новых шагов на этом пути. Два сеанса длительных наблюдений на установке в Fermilab в рамках эксперимента Muon g-2 дало впечатляющий, но всё же пока спорный результат. Учёные сообщили, что достоверность измеренной аномалии магнитного момента мюона составил 5 сигма, чего достаточно для заявления об открытии. Иными словами, учёные с признанной в науке достоверностью доказали, что в мире есть поля или частицы, выходящие за пределы Стандартной модели (на что сразу же «обиделись» тёмная материя и тёмная энергия, которые давно за рамками наших знаний о физике Вселенной). Но есть тонкость. В научной работе по измерению АМММ учёные «Фермилаб» использовали теоретические данные до 2020 года, а они устарели, в том числе, благодаря работам российских физиков. Учёные из Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) провели эксперименты, которые поставили под сомнение расчёты 2020 года. Если это учитывать, то достоверность измерения АМММ в Fermilab снижается ниже достоверно значимой отметки 5 сигма и открытием считаться не может. Американские учёные это признают и продолжат набирать статистику в дальнейших измерениях АМММ на своей установке и намерены к концу 2025 года превзойти теоретические границы измерения аномалии магнитного момента мюона, чтобы доказать или опровергнуть существование в мире «пятой» неизвестной силы или никому неведомой элементарной частицы. Но что-то заставляет учёных подозревать, что Новая физика есть и со Стандартной моделью, рано или поздно, придётся распрощаться. Французы заявили о достижении квантового превосходства в радарных технологиях
21.07.2023 [16:03],
Геннадий Детинич
Квантовые технологии находят применение не только в сфере вычислений и защищённой связи. Радарные технологии тоже ждут квантового превосходства. Классические радары слепнут в условиях сильных помех, тогда как эффект квантовой запутанности способен прорвать эту пелену. Французские учёные заявили, что они добились успеха на новом направлении и показали 20-процентное превосходство квантовых радарных технологий над классическими. О разработке в журнале Nature Physics сообщила группа исследователей из Высшей нормальной школы Лиона (Ecole Normale Supérieure de Lyon, CNRS). Учёные создали схему, в которой происходит запутывание двух микроволновых фотонов (квантов энергии), один из которых летит к цели, отражается от неё и в окружении шумов возвращается к источнику, где сравнивается с «холостым» фотоном, с которым он находится в состоянии квантовой запутанности. Эффект запутанности позволяет с большой точностью детектировать сигнал и выделяет его даже на фоне очень сильных помех. Измерение характеристик квантового радара показало, что опытная установка на 20 % превосходит возможности классических радаров определять цели. В теории эта разница может достигать четырёхкратного превосходства квантовых радаров, но для эксперимента даже такого преимущества достаточно, чтобы дальше работать в этом направлении. Следует сказать, что до этого никто не заявлял о создании схемы квантового радара для микроволнового диапазона. Предыдущие эксперименты были основаны на запутывании пар фотонов видимого или близкого к нему диапазонов, что наука освоила довольно хорошо. Но фотоны видимого или инфракрасного света, как нетрудно догадаться, будут бесполезны в дождь, снег и в густой облачности. Поэтому работающая схема квантового радара с фотонами микроволнового излучения в гигагерцовом диапазоне, где работают классические радары, это определённый прорыв, которым можно гордиться. Но также не следует забывать о разработках китайцев, которые тоже заняты серьёзными исследованиями в области квантовых радаров. Они также преуспели в экспериментах с запутыванием фотонов в оптическом диапазоне и представили альтернативу микроволновым фотонам в виде излучения запутанных электронов, разогнанных до скорости, близкой к световой. Во всех случаях серьёзным недостатком таких решений было и остаётся необходимость сильнейшего охлаждения запутанных частиц, что было также в случае схемы французских учёных. Электрону отказано принимать овальную форму — он по-прежнему «шарик», показало новое исследование
11.07.2023 [14:19],
Геннадий Детинич
Учёные из Университета Колорадо установили самые жёсткие на сегодня ограничения на потенциальное разнесение электрических зарядов в электроне. В рамках современных возможностей науки удалось определить, что заряд электрона абсолютно симметричен. Это позволит отбросить пустые теории о причинах дисбаланса материи и антиматерии в нашей Вселенной, которые, например, можно было бы подкрепить асимметрией заряда электрона. Но таковая, увы, не обнаружена. Стандартная модель физики частиц предсказывает равное количество материи и антиматерии вокруг нас, что на самом деле не так. Частицы материи и антиматерии должны были аннигилировать вскоре после Большого взрыва — они идентичны по всем характеристикам за исключением знака заряда. Тем самым сегодня Вселенная была бы пуста, и нас бы в ней не было. Следовательно, есть вероятность, что частицы и античастицы могут отличаться чем-то пока неуловимым, поэтому так важно измерить все доступные для этого свойства частиц. Отсутствие симметрии заряда у электрона — если у него обнаружится электрический дипольный момент, пусть даже слабый — могло бы дать пищу для новых теорий о дисбалансе вещества и антивещества во Вселенной. В эксперименте характеристики электронов измерялись лазерами, а сам подопытный электрон был помещён внутрь ионизированной молекулы (или обнаружен там). Затем на систему наводилось мощнейшее электромагнитное поле. Если бы заряд электрона был растянут, а не сосредоточен в одной точке, то он упал бы на бок «как яйцо на столе» при смене направления магнитного поля, поясняют учёные. Но электрон оставался в стабильном положении «как теннисный мячик», которому некуда и незачем катиться. Новая точность измерений магнитного диполя электрона в 2,4 раза превысила точность измерений в предыдущем эксперименте. И эта точность была в 1 млрд выше предсказанной Стандартной моделью. Если бы электрон был размером с Землю, то учёные смогли бы увидеть асимметрию заряда размерами с радиус одного атома. Похоже, дальше нет смысла искать дипольный момент у электрона. Даже если он обнаружится, то его влияние на дисбаланс материи и антиматерии во Вселенной будет настолько небольшим, что его можно будет не учитывать. Учёные «раздробили» электрон на три квазичастицы, что поможет создать точный квантовый компьютер
28.06.2023 [15:26],
Геннадий Детинич
В журналах Nature и Science группа учёных из Вашингтонского университета сообщила об обнаружении признаков теоретически перспективных топологических кубитов — энионов (не путать с анионами). В своё время топологические квантовые вычисления и энионы как кубиты предложил использовать российский физик Алексей Китаев, но с практической и даже экспериментальной реализацией этих возможностей так и не сложилось. Новое открытие обещает с этим помочь. В общем случае топологические квантовые вычисления предполагают использовать топологические кубиты, которые от обычных кубитов отличаются очень высокой устойчивостью к внешним возмущениям. Это означает, что квантовая система будет свободна от ошибок даже при довольно большом числе кубитов в системе. Китаев предложил на роль топологических кубитов двумерные топологические фазы с анионами в которых наблюдается дробный квантовый эффект Холла (FQAH, fractional quantum anomalous Hall). И вот теперь о надёжном обнаружении признаков дробного эффекта Холла сообщили американские учёные. Открытие знаменует собой первый и многообещающий шаг в создании отказоустойчивого кубита, потому что состояния FQAH могут содержать энионы — странные «квазичастицы», которые имеют лишь часть заряда электрона. Некоторые типы анионов, как предсказывал Китаев, можно использовать для создания так называемых «топологически защищённых» кубитов, устойчивых к любым небольшим локальным возмущениям. «Это действительно устанавливает новую парадигму для изучения в будущем квантовой физики с дробными возбуждениями», — сказал Сяодун Сюй (Xiaodong Xu), ведущий автор работ, который также является заслуженным профессором физики Boeing и профессором материаловедения и инженерии в Университете Вашингтона. Добиться заявленного эффекта учёные смогли при постановке эксперимента с двумя «чешуйками» такого двумерного полупроводникового материала, как теллурид молибдена (MoTe2). Одну пластинку толщиной в атом наложили на другую и слегка повернули, чтобы атомные решётки образовали муар. В результате электроны выстроились в структуру, которая воспроизвела новую экзотическую форму материи со своими свойствами. Например, структура проявила магнетизм без приложения внешнего магнитного поля. И если в обычных условиях для возникновения квантового эффекта Холла требуются сильнейшие магнитные поля, что ставит крест на практической ценности явления, то в новом состоянии вещества внутренний магнетизм привёл к возникновению этого эффекта и к появлению энионов (к «расщеплению» заряда взаимодействующих электронов на дробные и устойчивые части). Из этого возникает устойчивость кубитов и возможность их связанного или запутанного состояния — всё, что нужно для устойчивых квантовых вычислений. Более того, предложенная платформа обещает помочь в исследовании других не менее экзотических квазичастиц, также предложенных Китаевым в кандидаты топологических кубитов — неабелевых энионов. «Этот тип топологического кубита будет принципиально отличаться от тех, которые могут быть созданы сейчас, — сказал докторант физики Университета Вашингтона Эрик Андерсон (Eric Anderson), ведущий автор статьи в Science и соавтор статьи в Nature. — Странное поведение неабелевых энионов сделало бы их гораздо более надежными в качестве платформы квантовых вычислений». |