Опрос
|
реклама
Быстрый переход
Обнаружено новое состояние вещества на уровне квантовых явлений — открытие поможет в создании квантовой памяти
24.06.2023 [15:28],
Геннадий Детинич
Состояние вещества определяет тип взаимодействия элементарных частиц, который свой для твёрдой, жидкой и газообразной фазы. Но на уровне квантовых явлений всё настолько необычно, что «ни в сказке сказать, ни пером описать». В квантовом мире скрыто так много всего непознанного, что каждое открытие предоставляет горизонты возможностей. Так, недавно обнаруженное новое квантовое состояние вещества обещает помочь в создании квантовой памяти и не только. Исследователи из Массачусетского университета в Амхерсте и их коллеги из Китая воспроизвели условия, при котором вещество приобрело хиральное бозе-жидкостное состояние. Хиральность указывает на отсутствие левой и правой симметрии в структуре вещества, а отношение к бозе-жидкости говорит о чрезвычайной текучести или сверхпроводимости при температурах, близких к абсолютному нулю. Новое состояние вещества было получено в образце из двух наложенных один на другой слоёв полупроводника. В верхнем слое был избыток электронов, а в нижнем — определённый дефицит дырок. Тонкость эксперимента была в том, что на всех электронов дырок не хватало. Приложив к образцу сверхсильное магнитное поле, учёные начали следить за движением электронов. По мере увеличения силы поля образец переходил в состояние хиральной бозе-жидкости с демонстрацией ряда уникальных свойств. «На краю двух полупроводниковых слоёв электроны и дырки движутся с одинаковыми скоростями, — сказал физик Линьцзе Ду (Lingjie Du) из Нанкинского университета в Китае. — Это приводит к спиралевидному транспорту, который можно дополнительно модулировать внешними магнитными полями, так как при более высоких полях каналы электронов и дырок постепенно разделяются». Например, при охлаждении до температуры близкой к абсолютному нулю электроны в веществе «зависали в предсказуемом порядке и с фиксированным направлением спина» и не реагировали на другие частицы или на магнитные поля. Подобная стабильность может найти применение в цифровых системах хранения данных на квантовом уровне. Другой интересный момент заключался в том, что воздействие внешней частицы на один из электронов в системе проявлялось реакцией на всех электронах в системе, что объяснили эффектом квантовой запутанности частиц в бозе-жидкости. Это открытие тоже обещает быть полезным в будущих квантовых системах. Учёные «заморозили» свет в объёме материала, но пока только на компьютерной модели
21.06.2023 [14:19],
Геннадий Детинич
Международная группа физиков впервые смогла получить убедительные доказательства локализации электромагнитной волны в трёхмерных материалах. Грубо говоря, свет «заморозили» в объёме материала. Открытие сделано на цифровой модели благодаря значительно возросшим вычислительным мощностям и в перспективе позволит поставить физический эксперимент, а это путь к прорывам в оптике, лазерах и в других областях. Строго говоря, исследователи искали доказательства существования так называемого перехода или локализации Андерсона. Это явление ещё в 1958 году теоретически обосновал американский физик-теоретик Филип В. Андерсон, за что в 1977 году он был награждён Нобелевской премией по физике. Явление стало важнейшим в описании физики конденсированных сред как для квантовой, так и для классической механики. Учёный объяснил, что в зависимости от случайного распределения дефектов в материале электроны будут либо двигаться, создавая электрический ток, либо попадут в ловушки из дефектов и остановятся там (станут локализированными) и тогда материал будет демонстрировать свойства изолятора (диэлектрика). Как в аналогичных условиях ведут себя электромагнитные волны, до конца было неясно. В одном или двух измерениях свет демонстрировал похожие свойства, но для объёмных материалов это явление не было обнаружено. Новые компьютеры и оптимизированное программное обеспечение (FDTD Software Tidy3D) позволили проводить колоссальные по объёму расчёты всего за 30 минут вместо многих дней. Модель показала, что для стекла и кремния явление не обнаруживается, что стало простым объяснением, почему десятилетия экспериментов с этими материалами на дали результата. Зато для объёмного материала из металлических наносфер расчёты неожиданно показали, что электромагнитная волна действительно локализуется в пространстве. Моделирование подтвердило, что свет (как частный случай электромагнитных волн) можно заставить взаимодействовать с объёмным материалом. Это позволит открыть новые фотокатализаторы, продвинуться в области лазеров (создавая продвинутые резонаторы и прочее), а также совершить открытия в области накопления и хранения энергии. «Трёхмерное удерживание света в пористых металлах может усилить оптическую нелинейность, взаимодействие света и материи, позволит управлять случайным свечением и целенаправленным осаждением энергии, — говорят исследователи. — Мы ожидаем, что у этого явления может быть множество применений». В Австрии создали ретранслятор запутанных квантовых состояний и телепортировали их по оптоволокну на 50 км
16.06.2023 [13:34],
Геннадий Детинич
Если квантовые компьютеры пойдут по пути развития классических систем, то следующим шагом для них станет объединение в сети, включая глобальные. Необходимо будет передавать квантовые состояния, в частности — запутывать кубиты одного компьютера с кубитами другого. На небольших расстояниях это ещё можно сделать, но обеспечить такую передачу на десятки, сотни и тысячи километров — это задача, требующая особых ретрансляторов. Работу такого показали в Австрии. Проблема с ретрансляторами квантовых состояний в том, что любое измерение квантовых характеристик объекта ведёт к коллапсу всех остальных состояний. Такая физика сильно затрудняет квантовое распределение ключей и квантовую криптографию на этой основе. Дополнительно проблему усугубляет тот факт, что передачу квантовых состояний необходимо втиснуть в существующую кабельно-волоконную инфраструктуру — обеспечить работу как на пассивном, так и на активном оборудовании. Если проще — переносящий квантовое состояние фотон требуется сначала перевести в фотон со стандартной для современной телекоммуникации частотой для его передачи по оптике, где свои требования к длинам волн, а затем сделать обратное преобразование. Осуществить подобный трюк удалось учёным из австрийского Университета Инсбрука. Исследователи собрали ретранслятор запутанности фотонов и показали её «телепортацию» на 50 км. Уточним, речь идёт не о передаче информации, которую можно расшифровать тем или иным способом, а о передаче квантового состояния (обычно речь идёт об измерении спина — ориентации магнитного вектора элементарной частицы). Один из фотонов мог быть 0, 1 или бесконечным множеством промежуточных значений, но при измерении характеристик одного из них, второй мгновенно показывал противоположное значение по измеряемому параметру. На самом деле, учёные не выносили оптоволокно из лаборатории и использовали бобины с двумя отдельными 25-км отрезками оптического кабеля. Ретранслятор с квантовой памятью соединял эти отрезки посредине. Квантовая память в виде ионов кальция в оптической ловушке (в оптическом резонаторе) играла роль запоминающего устройства на случай потери фотонов в процессе передачи, но главное — она была ключевым элементом в обмене запутанными состояниями между фотонами в одном и другом отрезке оптоволокна. Каждый из ионов кальция испускал по фотону. Эти фотоны разлетались по своим кабелям (сегментам сети) и при этом оставались спутанными каждый со своим ионом. Перед отправкой фотона в другой конец оптоволокна его преобразовывали в фотон с длиной волны 1550 нм, чтобы он соответствовал действующему стандарту в телекоммуникации. Затем ионы кальция запутывали между собой. Эксперимент показал, что запутывание ионов в ретрансляторе вело к синхронному запутыванию фотонов или, проще говоря, к мгновенной передачи запутанности по оптическому кабелю длиной 50 км. Согласно проделанным экспериментам, учёные сделали вывод о необходимости ретрансляции квантовых состояний каждые 25 км. Это будет наилучшим образом соответствовать требованиям для сохранения высокой пропускной способности и наименьшей вероятности появления ошибок. Зонд NASA Parker приблизился к Солнцу настолько, что увидел рождение солнечного ветра
08.06.2023 [08:57],
Геннадий Детинич
Наши телескопы дотягиваются до края Вселенной, но мы всё еще не до конца понимаем процессы, происходящие на нашей звезде по имени Солнце. Зонд NASA Parker Solar Probe стал самым передовым инструментом по изучению физики Солнца, и он, наконец, смог проследить солнечный ветер до истоков его рождения. Солнечный ветер — это поток заряжённых частиц или солнечной плазмы, который время от времени вырывается за пределы его атмосферы и разлетается в разные стороны со скоростями до 800 км/с. Когда Солнце неактивно, солнечный ветер вырывается с полюсов звезды, но по мере приближения к пику активности в своём 11-летнем цикле Солнце может испускать потоки плазмы в любых направлениях и часто в сторону Земли. Магнитное поле Земли взаимодействует с облаками заряжённых частиц, и мы видим это взаимодействие в полярных сияниях, а также можем обнаруживать в проблемах со связью и в сбоях работы спутников. Поэтому понимание процессов на Солнце и, в частности, отслеживание образования солнечного ветра позволит более точно прогнозировать космическую погоду и обеспечивать безопасность космических полётов. Зонд NASA Parker Solar Probe вооружён приборами для детектирования заряжённых частиц, и он приблизился к Солнцу настолько близко, что стал на короткое время погружаться в его атмосферу. В один из предыдущих проходов рядом с Солнцем — в ноябре 2021 года — зонд пролетел рядом с корональной дырой. Мы знаем, что солнечный ветер вырывается в космос из корональных дыр — разрывов в его атмосфере, которые возникают при размыкании линий магнитного поля Солнца. Обычно линии магнитного поля замкнуты — выходят из звезды и, изогнувшись дугой, входят в него в другом месте. Но по мере нарастания активности Солнца, линии магнитного поля могут размыкаться и другим концом уходить в свободное пространство. Образуется магнитная воронка, горловина которой открывается в никуда и иногда в сторону Земли. Такая дыра не видна невооружённому глазу. Она будет дырой на изображении только в рентгеновском диапазоне. Однако именно в это окно устремится солнечная плазма, удерживаемая до этого магнитными полями. Оставалось загадкой, какие процессы приводят к размыканию магнитных линий и что даёт энергию для ускорения заряжённых частиц. На этот счёт существует две популярные теории. Согласно одной из них, плазма ускоряется за счёт так называемых альвеновских волн. По другой теории энергия для ускорения частиц появляется в процессе пересоедининия линий магнитного поля. Собранные зондом Parker данные указывают на то, что солнечный ветер действительно зарождается в процессе хаотического пересоединения линий магнитного поля звезды. Зонд обнаружил на стыках так называемых супергрануляционных ячеек на Солнце процессы, в ходе которых частицы двигались с невероятно высокими скоростями — в 10–100 раз превышающими скорость солнечного ветра средней силы. Такое можно объяснить лишь пересоединеннием линий магнитного поля, но никак не ускорением волнами Альвена. Фактически солнечный ветер рождался по границам ячеек размерами около 30 тыс. км, где магнитное поле было предельно сильное и переключение его линий высвобождало огромную энергию. Солнечный ветер вырывался как струи воды из лейки — равномерно и с одинаковыми промежутками. В России импортозаместили клистроны — теперь все синхротроны станут 100 % российскими
31.05.2023 [11:33],
Геннадий Детинич
На днях представители Института ядерной физики СО РАН сообщили об успешных испытаниях ключевого компонента синхротрона — клистрона. Для российских ускорителей клистроны закупались за границей, но в условиях санкций контракты на поставку были разорваны. Пришлось срочно восполнять пробел, что сделано с успехом — первый отечественный прототип клистрона завершил испытания, и на его основе начали изготавливать серийные изделия. Клистрон — это базовый элемент линейного ускорителя электронов и позитронов. Например, для синхротрона «СКИФ» необходимо три клистрона в составе ускорителя (линака) и один запасной. Контракт на поставку клистронов был заключён с японской компанией Canon. Первый клистрон был получен до введения санкций, но в поставке трёх оставшихся было отказано. К счастью, задолго до этого российские физики получили работающий клистрон в подарок от Национальной ускорительной лаборатории SLAC в ответ на некую помощь со стороны России, поэтому с конструкцией клистрона российские учёные понемногу знакомились и, вероятно, готовились повторить. «Мы занимаемся этим направлением более 30 лет, — отметил директор ИЯФ СО РАН академик РАН Павел Логачев, которого цитирует портал Naked Science. — Всё началось с того, что Национальная ускорительная лаборатория SLAC (Стэнфордский университет) отблагодарила нас за то, что мы выручили их в тяжёлой ситуации, и подарила нам свой клистрон. Мы стали учиться с ним работать. Благодаря этим наработкам, а также новым, сейчас, когда возникла необходимость, мы создали собственный клистрон. Это позволило нам стать самостоятельным игроком и ни от кого не зависеть при создании линейных ускорителей, которые востребованы в физике высоких энергий, при создании источников синхротронного излучения и других приложений, где необходима СВЧ-мощность более 50 мегаватт». По-сути клистрон — это большая электровакуумная лампа, в которой ток электронов от катода к аноду усиливается в 100 тыс. раз. На вход подаётся 500 Вт СВЧ-мощности, а на выходе снимается 50 МВт с током частотой 3 МГц. Изготовленный в России прототип два месяца испытывался с выходом на требуемые 50 МВт и признан готовым для серийного производства. Сам линейный ускоритель для «СКИФА» также испытан работой с клистроном, но для запуска был использован японский клистрон, который, скорее всего, в будущей установке будет резервным. Клистроны понадобятся не только для «СКИФА». В России будет создано множество синхротронов, для каждого из которых будет необходимо изготовить линейный ускоритель со своими клистронами. В частности, такие установки понадобятся Курчатовскому специализированному источнику синхротронного излучения «КИСИ-Курчатов» (Москва), синхротрону «Русский источник фотонов» («РИФ») на базе Дальневосточного федерального университета, синхротрону «СИЛА» на базе Института физики высоких энергий имени А. А. Логунова (Москва), а также для коллайдера Супер С-тау фабрики, источника комптоновского излучения в Сарове и источника нейтронов в Дубне. Добавим, рабочим инструментом в синхротронах является не поток (пучки) электронов и позитронов, а генерируемое ими интенсивное рентгеновское излучение. В процессе рассеяния вторичного рентгеновского излучения в изучаемых образцах — материалах и биологических образцах — удаётся с высокой детализацией изучать их строение. Это необходимо для поиска перспективных материалов и разработки лекарств, а также для множества других приложений. Также каждый клистрон стоит приличных денег — до $20 млн за каждый. Теперь Россия может не только обеспечить себя этими инструментами, но и выставит их на мировом рынке по ценам ниже конкурирующих предложений. Зафиксирован случай редчайшего распада бозона Хиггса — это может изменить представления о мироздании
30.05.2023 [12:08],
Геннадий Детинич
Обнаружение бозона Хиггса на Большом адронном коллайдере в 2012 году стало завершающим в череде исследований, подтвердивших правильность Стандартной модели. Все фундаментальные частицы были найдены экспериментально, а их характеристики были измерены и согласованы с теорией. Впрочем, остаются небольшие расхождения между теорией и практикой, что заставляет продолжать эксперименты, и особенно это касается такой «молодой» частицы, как бозон Хиггса. На стартовавшей на днях конференции «Физика большого адронного коллайдера» (LHCP) представители коллабораций ATLAS и CMS рассказали, как они сообща обнаружили редчайшее событие — распад бозона Хиггса на электрически нейтральный носитель слабого взаимодействия (Z-бозон) и носитель электромагнитной силы (фотон). Бозон Хиггса в столкновениях частиц на ускорителе может распадаться по целому ряду каналов и распад на Z-бозон и фотон в рамках Стандартной модели — это очень и очень редкое событие, которое должно случаться с вероятностью всего 0,15 %. Следует сказать, что в данных БАК учёные ещё не встречали распада бозона Хиггса на Z-бозон и фотон, что косвенно подтверждает редкость такого явления. Обнаружить явление смогли комбинированные данные коллективов ATLAS и CMS, собранные на БАК в период с 2013 по 2018 год, а также использование машинного обучения для поиска интересующих событий. По-отдельности статистическая точность обнаружения указанного канала распада в данных ATLAS составила 2,2σ (сигма — стандартное отклонение), а в данных CMS — 2,6σ. В сумме статистическая значимость события достигла величины 3,4σ, чего не хватило для заявки на открытие (для этого требуется величина отклонения не менее 5 сигм), но этого оказалось достаточно для почти надёжного подтверждения события. Учёные подтвердили, что бозон Хиггса действительно может распадаться на Z-бозон и фотон. Дальнейшие наблюдения за подобным каналом распада или подтвердит физику в рамках Стандартной модели, или заставит усомниться в её завершённости. Новые наблюдения за бозоном Хиггса будут проводиться на модернизированном БАК, возможности которого улучшались поэтапно и теперь достигли максимального значения — в прошлом году энергию столкновений подняли до 13,6 ТэВ. В ближайшие годы статистика по распаду бозона Хиггса на Z-бозон и фотон будет набираться и даст чёткий ответ на вопрос: понимаем ли мы устройство нашего мира, или нет? Учёные добились искривления пространства-времени на квантовом симуляторе — это поможет в создании «теории всего»
20.05.2023 [16:26],
Геннадий Детинич
Одна из важнейших нерешённых задач в физике — это нахождение связи между квантовой механикой и общей теорией относительности. Для её решения необходима сложнейшая математика и невообразимые эксперименты. И если на бумаге ничего невозможного нет, то с опытами всё плохо — либо кванты, либо классика. Но надежда есть. Группа европейских и сингапурских учёных предложила квантовый симулятор, который воспроизводит эффект квантовой гравитации и не только. В физике и не только симуляция на одних системах может быть транслирована на другие, казалось бы, совершенно иные по свойствам системы. Учёные из Венского технологического университета, Университета Крита, Наньянского технологического университета (Сингапур) и Берлинского университета опубликовали в научном журнале Proceedings of the National Academy of Sciences of the USA (PNAS) статью, в которой рассказали об успешной симуляции гравитационного линзирования на квантовом симуляторе. Фактически они утверждают о симуляции квантовой гравитации, обоснованием которой занимаются все физики-теоретики и никак не могут это сделать. В качестве основы для квантового симулятора исследователи взяли облака сверхохлаждённых атомов — это определённо квантовые структуры с соответствующим математическим аппаратом и массой решений по управлению ими (вспомним многочисленные квантовые вычислители-симуляторы). Вместо света учёные взяли за основу звук и представили его как релятивистский объект из общей теории относительности. Получился квантовый симулятор распространения света в пространстве, который работал в точном соответствии как с ОТО, так и с квантовой теорией. В частности, эксперимент показал осуществимость эффекта гравитационного линзирования на симуляторе. Эксперименты показывают, что форма световых конусов, эффекты линзирования, отражения и другие явления могут быть продемонстрированы в атомных облаках именно так, как это ожидается в релятивистских космических системах. Постановка экспериментов и полученные результаты могут помочь открыть неизвестные доселе явления и эффекты и, в конечном итоге, могут привести к созданию общей теории функционирования нашей Вселенной. В лаборатории плазмы создали модель чёрной дыры — физиков заинтересовал процесс её питания
20.05.2023 [08:16],
Геннадий Детинич
Чёрные дыры манят своей фантастической загадочностью — это колоссальные источники энергии и даже тоннели для межзвёздных перелётов. Такое необходимо изучать в подробностях и моделирование для этого — это правильный подход. Учёные из Имперского колледжа Лондона поставили эксперимент по моделированию аккреционных дисков чёрных дыр. Это поможет разобраться с питанием этих объектов и согласовать астрономические наблюдения с экспериментами. Во-первых, аккреционные диски вокруг чёрных дыр — это то, что позволяет нам видеть их нашими приборами. Четыре года назад благодаря этому феномену впервые было получено прямое изображение чёрной дыры в галактике Messier 87 (M87). Оранжевое кольцо на изображении — это раскрашенный компьютером диск из сверхразогретой плазмы вокруг чёрной дыры. Это относительно устойчивое образование. Вещество падает на чёрную дыру и испаряется в этом процессе — превращается в плазму. Электроны отрываются от атомов, и атомы становятся ионами. И всё это кружит с огромными скоростями вокруг чёрной дыры, пока не упадёт на неё. Упасть всему и сразу не даёт центробежная сила, которая выталкивает частицы вещества наружу. Эти процессы в целом сбалансированы и остаются более-менее стабильными миллионы и даже миллиарды лет. Но всё же вещество падает на чёрную дыру и она этим питается. Как это происходит в деталях, учёные не знают — теория и существующие модели процесса очень приблизительные. Поставленный эксперимент помог и ещё поможет разобраться в нюансах процесса питания чёрной дыры, что важно для понимания физики этих явлений. Опыт был поставлен на установке Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE). Этот прибор генерирует импульсы огромной силы тока — до 1,8 млн А. Ток такой силы ионизирует рабочее вещество — превращает его в плазму. Из минусов — импульсы тока очень короткие и не позволяют обеспечить длительные наблюдения. Возможностей установки хватило только на один полный оборот модели аккреционного диска, что очень мало для получения полной картины о динамике плазмы в диске. Но даже этого хватило, чтобы понять — модель работает и в целом отражает физику процессов плазмы в аккреционном диске настоящей чёрной дыры. Так, плазма ближе к центру вращалась быстрее, чем на периферии аккреционного диска — это соответствует астрономическим наблюдениям за чёрными дырами. Учёные рассчитывают, что смогут увеличить длительность импульса и дольше удерживать модель в работе, что поможет продвинуться ещё на шаг в изучении чёрных дыр, о чём они сообщили в статье в журнале Physical Review Letters. Эйнштейн ошибался: эффект квантовой запутанности доказан экспериментально
16.05.2023 [15:37],
Геннадий Детинич
Швейцарские физики поставили эксперимент, который может служить почти абсолютным доказательством существования эффекта квантовой запутанности. Этот вопрос крайне смущал многих физиков прошлого века, включая Альберта Эйнштейна, и был предметом постоянных споров. Для нового эксперимента построили 30 метров вакуумной трубы с криогенным охлаждением, чтобы фотон как можно дольше летел от одной запутанной частицы к другой и не успел вмешаться в измерения. Эйнштейн не мог смириться с мыслью, что квантово запутанные частицы мгновенно влияют друг на друга на условно бесконечных расстояниях. В таком случае они должны «передавать информацию» быстрее скорости света. По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц. Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго (оно будет противоположным по направлению) становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер (за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год). В классической системе (нашем с вами мире) неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются. Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света. Учёные из Швейцарской высшей технической школы Цюриха (ETH Zurich) создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц. По 30-м трубе в вакууме с охлаждением до -273°C микроволновый фотон пролетает с одного конца в другой за 110 нс. Измерения длились на несколько наносекунд быстрее. Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил. До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. «В нашей машине 1,3 [тонны] меди и 14 000 винтов, а также огромное количество знаний по физике и инженерных ноу-хау», — сказал квантовый физик из ETH Zurich Андреас Валлрафф (Andreas Wallraff). У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами. В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики. Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых (сверхчувствительных) материй, как элементарные частицы. В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше. Физики нашли новый путь для приближения к абсолютному нулю — через усложнение
06.05.2023 [12:57],
Геннадий Детинич
Законы физики запрещают нулевые колебания во Вселенной и, тем самым, гарантируют, что абсолютный ноль или тепловое дно никогда не будет достигнуто. Однако приближаться к нему можно, бесконечно затрачивая на каждый шаг время и энергию. Благодаря новой работе международной группы физиков у нас появился ещё один параметр, усложняя который можно приближаться к абсолютному нулю, что обещает новые и неожиданные открытия. Для охлаждения элементарных частиц (материи) необходимо тем или иным способом отбирать у них энергию до тех пор, пока у нас будут на это ресурсы и время. В теории охладить материю до абсолютного нуля (-273,15 °C) можно за бесконечное время с затратами бесконечной энергии, что в реальном мире недостижимо по обоим параметрам. В системе всё равно останутся нулевые колебания, что будет означать отличную от абсолютного нуля температуру. Но теперь появляется теоретическая возможность использовать для охлаждения материи ещё один неиспользованный ранее ресурс — это сложность системы. Фактор сложности или комплексности системы проистекает из законов квантовой физики. Точнее, из квантовой неопределённости и невозможности одновременно знать две «враждующие» характеристики квантовой системы, например, одновременно координаты и импульс (количество движения). Квантовое состояние системы описывается бесконечным набором волновых функций, и измерение одного из состояний заставляет мгновенно исчезать все остальные. Физики предположили, что если определить координаты частицы, то это будет означать, что она полностью остановилась (все остальные состояния коллапсировали) и достигала состояния, как в случае абсолютного нуля. Все квантовые детали (информация о них) фактически стираются. Согласно принципу Ландауэра, потеря одного бита данных приводит к выделению энергии. Иначе говоря, система теряет энергию и охлаждается ещё сильнее. И чем сложнее квантовая система, тем больше она несёт информации и тем сильнее охлаждается при измерении квантовых свойств. Именно это новое открытие роли сложности квантовой системы открывает новый угол зрения на поиск пути к абсолютному нулю, даже если это такое же практически невозможное решение, как и те, с которыми учёные уже работали (энергия и время). «Мы обнаружили, что можно определить квантовые системы, которые позволяют достичь абсолютного основного состояния даже при конечной энергии и за конечное время — никто из нас этого не ожидал», — сказал один из участников проекта Маркус Хубер (Marcus Huber) из Венского технологического университета в Австрии. Вполне возможно, что повышение сложности квантовых систем — это ещё один способ приблизиться к абсолютному нулю или, по крайней мере, ускорить процесс движения в эту сторону. В перспективе новый подход может привести к открытию новых явлений в квантовой физике и к созданию новых материалов и технологий. Учёные снова доказали квантовую природу света, но теперь во времени — с опыта Юнга прошло 222 года
04.04.2023 [15:01],
Геннадий Детинич
Волновая природа света была доказана в знаменитом двухщелевом опыте Томаса Юнга ещё в 1801 году. Много позже учёные доказали, что при этом свету (фотонам) остаются присущи свойства элементарных частиц. Но Юнг первым показал, что в пространстве свет ведёт себя как волна. И только спустя 222 года физики смогли поставить эксперимент, который доказывает, что свет ведёт себя как частица и волна не только в пространстве, но и во времени. Эксперимент был поставлен в Имперском колледже Лондона. В оригинальном опыте Юнга свет пропускался через две расположенные рядом узкие щели. На экране за щелями возникал целый ряд штрихов, что объясняется волновыми свойствами света — волны из двух щелей взаимодействовали друг с другом и либо усиливали друг друга, либо гасили с разной степенью интенсивности. Тем самым волновая природа света была доказана при распространении волн в пространстве. С оценкой волновых свойств света во времени всё было намного сложнее. Скорость света слишком большая для эксперимента. Этим даже обычно пренебрегали при расчётах. За правило бралось, что свет во времени ведёт себя как частица. Группе физиков удалось воссоздать двухщелевой эксперимент, который доказал волновую природу света во времени. В новом опыте две щели были сделаны из такого материала, как 40-нм плёнка из оксида индия-олова (популярный материал для изготовления дисплеев для смартфонов, например). Плёнка была нанесена на стеклянную подложку, покрытую 100-нм слоем золота. Предложенная «щель» играла роль зеркала, меняющего отражающие свойства с 8 % до 60 % по сигналу (после подачи импульса накачки). Скорость переключения зеркал-щелей оказалась феноменальной — считаные фемтосекунды. Процессы интерференции света оказалось возможным наблюдать во времени — волны взаимодействовали после прохождения щелей и усиливали либо гасили друг друга, но только это происходило не с разложением в пространстве, а на шкале времени. Щели действовали как затворы в фотоаппарате, срабатывая с такой скоростью, что каждый раз через них проникала лишь часть волны. Подобное, например, позволит измерять свойства света за один период волны. Поставленный эксперимент открывает путь к новой спектроскопии. Это пригодится при изучении астрофизических явлений, к примеру, чёрных дыр. Также временная интерференция света — это новые возможности в области квантовых вычислений и даже в области обычной фотоники — в оптических интерфейсах или процессорах. А есть ещё темпоральные или временные кристаллы и много неизученных областей, где к новым открытиям пока даже не знают, как подступиться. На Большом адронном коллайдере впервые поймали рукотворные нейтрино — помог собранный на коленке детектор FASERnu
22.03.2023 [19:15],
Геннадий Детинич
Нейтрино являются вторыми по распространённости во Вселенной фундаментальными частицами после фотонов, но они настолько слабо взаимодействуют с веществом, что одно время даже были кандидатами на роль тёмной материи. Всё-таки их можно улавливать и учёные это делают с 1956 года. Однако в коллайдерах нейтрино ещё не получали, пока в 2022 году на БАК не поставили серию экспериментов, уверенно доказавших детектирование нейтрино, полученных искусственным путём. Любопытно, что установка FASERnu для детектирования нейтрино в ходе экспериментов на БАК собрана из комплектующих, оставшихся от прошлых экспериментов. Детектор поместили в один из боковых служебных коридоров коллайдера, но это не означает, что открытие рукотворных «призрачных частиц» не имеет важного научного значения. До сих пор учёные фиксировали в основном нейтрино низких энергий, тогда как из глубин космоса к нам приходят нейтрино высоких энергий. На БАК были получены как раз высокоэнергичные частицы, что открывает возможность использовать полученные данные для понимания астрофизических процессов. Отдельно приятно, что значительную часть теоретической работы и обработку данных провели российские физики. В коллаборации FASER эту задачу взял на себя Объединённый институт ядерных исследований (ОИЯИ). В экспериментах по физике нейтрино для регистрации частиц использовалась ядерная фотоэмульсия — чередование вольфрамовых пластин для замедления нейтрино с фоточувствительной эмульсией. «Группа ОИЯИ участвует в моделировании сигнала, реконструкции и анализе фотоэмульсионных данных, проектировании и создании системы охлаждения с возможностью контроля и стабилизации температуры для FASERnu», — рассказала участник коллаборации FASER от ОИЯИ, научный сотрудник Сектора экспериментальной нейтринной физики Светлана Васина. В предыдущих экспериментах на БАК были детектированы шесть частиц-кандидатов на роль высокоэнергетических нейтрино. Третий запуск БАК в 2022 году с повышенной яркостью дал настолько много данных, что их статистическая значимость превысила 16 сигм при требуемом уровне достоверности 5 сигм. Иначе говоря, сомнения в детектировании на БАК высокоэнергетических нейтрино при таких условиях стремятся к нулю. Нейтрино невозможно обнаружить напрямую при сталкивании пучков частиц, но благодаря детектору FASERnu где-то в боковом тоннеле БАК это стало возможным. Тем самым БАК стал инструментом, который полностью воспроизводит весь спектр известных современной физике элементарных частиц, включая бозон Хиггса, ради поиска которого, собственно, Большой адронный коллайдер и строился. Открыт эффект аномальной вторичной электронной фотоэмиссии — это бросает вызов общепринятой фотоэлектрической теории Эйнштейна
18.03.2023 [14:29],
Геннадий Детинич
Международная команда физиков под руководством китайских учёных сделала неожиданное открытие. Давно известный искусственный заменитель бриллиантов — титанат стронция (SrTiO3) — показал неожиданный эффект при облучении его светом. Этот материал с квантовыми свойствами в ответ на луч света определённой интенсивности возбудил неожиданно сильный и когерентный вторичный пучок электронов. Эффект не укладывается в современную теорию и ждёт объяснения. Общепринятую сегодня фотоэлектрическую теорию создал в начале прошлого века Альберт Эйнштейн. За её разработку он получил Нобелевскую премию по физике в 1921 году. Эта теория, в частности, математически описывает фотоэффект, что сегодня широко используется во множестве областей науки, производства, энергогенерации и жизни. Физики из Университета Вестлейк в Ханчжоу вместе с коллегами из США, Японии и Финляндии показали, что эта теория может быть неполной и содержать массу скрытых возможностей, о чём они сообщили в журнале Nature. В процессе облучения подложки из титаната стронция фотонами с несколькими значениями энергий в диапазоне 10 эВ (электрон-вольт) учёные смогли получить «очень интенсивную когерентную вторичную фотоэмиссию», более сильную, чем когда-либо прежде. Если точнее, вторичная эмиссия электронного пучка была на порядок мощнее, чем это допускает теория и устоявшаяся за 60 лет практика, то есть с тех пор, как был открыт этот материал. «Это большое дело, потому что в нашем существующем понимании фотоэмиссии нет механизма, который мог бы произвести такой эффект, — сказал один из ведущих авторов исследования. — Другими словами, в настоящее время у нас нет никакой теории для этого, так что в этом смысле это чудесный прорыв». Более того, вторичная эмиссия электронов представляла собой когерентный пучок — согласованный выброс электронов по углу и скорости. Это может оказаться перспективным направлением для создания новых медицинских и научных приборов, например, для визуализации скрытых объектов. Наконец, мощные электронные пучки остаются основой рентгеновских лазеров, а это тоже движение вперёд в науке, медицине и биотехнологиях. Физики объяснили, как искать червоточины во Вселенной — задачу это не сильно упростило
10.03.2023 [12:20],
Геннадий Детинич
Гипотетические порталы во Вселенной, червоточины или тоннели в пространстве-времени — всё это, так или иначе, можно вывести из теории относительности Эйнштейна. Было бы заманчиво прокалывать пространство и время и моментально перемещаться из одного края Вселенной в другой. Вот только червоточины как были, так и остаются смелой и ничем не подтверждённой гипотезой. Но если они есть, учёные придумали, как их найти, хотя это будет непросто. Группа учёных из Китая опубликовала в журнале Physical Review D статью, в которой объяснила возможные физические явления, связанные с поведением гипотетической червоточины. Компьютерное моделирование позволяет втиснуть в современные представления учёных о Вселенной и физических явлениях, происходящих в ней, некоторые несуществующие элементы и хотя бы грубо понять, возможны они в принципе или нет. Учёные представили червоточину как электрически заряженную сферу, и попытались оценить её прямое воздействие на окружающий материальный мир. В реальном мире, например, мы не можем видеть чёрные дыры, но доказательств их существования столько, что учёные уже не сомневаются в природе таких объектов. Точно также учёные надеялись по каким-то косвенным признакам научиться обнаруживать проколы пространства-времени во Вселенной. Моделирование показало, что если червоточины существуют, то они могут быть достаточно массивными, чтобы проявлять один из аспектов теории относительности Эйнштейна, а именно преломлять свет фоновых объектов. Иначе говоря, «кротовые норы» как и чёрные дыры или галактические скопления будут вызывать эффект микролинзирования, увеличивая и искажая далёкие звёзды и галактики за ними. Нюанс в том, что все эти объекты в силу своей природы искажают свет по-разному. Например, чёрные дыры вызывают появление четырёх примерно одинаковых по яркости увеличенных изображений фоновых объектов. Моделирование показало, что эффект от микролинзирования червоточинами будет другой — объект предстанет в трёх увеличенных копиях, одна из которых будет намного ярче двух других. Тем самым можно будет отличить червоточину от чёрной дыры. В то же время найти по этим признакам червоточину среди других массивных объектов — звёзд, галактик, скоплений звёзд и галактик и чёрных дыр, создающих эффект микролинзирования во Вселенной, будет также «легко», как попытаться услышать шёпот человека посреди рок-концерта, делятся мнением специалисты. Очевидно, что нужны другие подсказки, как искать тоннели пространства-времени во Вселенной, а пока мечта остаётся мечтой. Химики освоили квантовое туннелирование — на одну загадку устройства Вселенной стало меньше
02.03.2023 [14:35],
Геннадий Детинич
Квантовая физика неплохо развилась вплоть до практической реализации (туннельные явления, кубиты и прочее), но для химиков квантовые события — это тёмный лес. Между тем, как и любые процессы в этом мире, химические реакции подвержены законам квантового мира. Учёные впервые выяснили, до какой степени можно пренебрегать ими при изучении химических процессов и как квантовые явления в химических реакциях влияют на физический мир. Учёным очень сложно теоретически описать точное квантово-механическое химическое взаимодействие трёх частиц, а для более четырёх реагентов это практически невозможное задание. Поэтому всё сводится к пренебрежению квантовыми эффектами и к решению задач только с позиции классической физики. Подобное приближение удобно для практического применения в повседневной жизни, но не позволяет разобраться в ряде фундаментальных процессов мироустройства. Очевидно, что для изучения квантовых явлений в химических реакциях необходимо придумать и поставить эксперимент, который был бы подтверждён теоретическими выкладками. Эффект туннелирования оказался одним из наиболее удобных кандидатов на постановку такого эксперимента, но на его организацию потребовались годы планирования. Опыт удался у команды исследователей из Университета Инсбрука, о чём они сообщили в свежем выпуске журнала Nature. Для опыта был выбран изотоп водорода дейтерий, который поместили в ионную ловушку и охладили, после чего заполнили ловушку газообразным водородом. За счёт сильного охлаждения отрицательно заряженным ионам дейтерия не хватало энергии для химической реакции с молекулами водорода. Тем не менее, отдельные ионы дейтерия вступали в реакцию с молекулами водорода, чего не могло быть с точки зрения классической физики. «Квантовая механика позволяет частицам преодолевать энергетический барьер благодаря их квантово-механическим волновым свойствам, и происходит реакция, — объяснил ведущий автор исследования Роберт Уайлд (Robert Wild). — В нашем эксперименте мы даём возможным реакциям в ловушке около 15 минут, а затем определяем количество образовавшихся ионов водорода. По их количеству мы можем сделать вывод о том, как часто происходила реакция». Предложенный в 2018 году теоретический расчёт показал, что в условиях эксперимента одно квантовое туннелирование будет происходить в одном случае из каждых ста миллиардов столкновений, что учёные из Инсбрука смогли подтвердить на практике. Иными словами, для химической реакции с квантовыми явлениями эксперимент впервые подтвердил теорию. Одновременно это была самая медленная реакция с заряженными частицами из когда-либо наблюдавшихся. На основе проведённого исследования можно разработать более простые теоретические модели «квантовых» химических реакций и проверить их на реакции, которая уже успешно продемонстрирована. Туннельный эффект возникает во многих физических и химических процессах, а это путь к их лучшему пониманию и к открытию явлений, которые были либо плохо объяснимыми, либо вовсе непонятными для науки, например, такими, как астрохимический синтез молекул в межзвёздных облаках. Подтверждающий теорию эксперимент — это лучшее, что можно использовать для новых открытий. |