Сегодня 10 апреля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → tinkoff

В Tinkoff Research придумали, как ускорить обучение искусственного интеллекта в 20 раз

Учёные из лаборатории исследований искусственного интеллекта Tinkoff Research разработали SAC-RND — новый алгоритм для обучения ИИ. На робототехнических симуляторах было достигнуто повышение скорости обучения в 20 раз по сравнению со всеми существующими аналогами при возросшем на 10 % качестве. Оптимизация крайне ресурсоёмкого процесса обучения ИИ ускорит развитие многих сфер, где применяется ИИ.

 Источник изображения: Tinkoff

Источник изображения: Tinkoff

Разработчики утверждают, что SAC-RND может «повысить безопасность беспилотных автомобилей, упростить логистические цепочки, ускорить доставку и работу складов, оптимизировать процессы горения на энергетических объектах и сократить выбросы вредных веществ в окружающую среду. Открытие не только улучшает работу узкоспециализированных роботов, но и приближает нас к созданию универсального робота, способного в одиночку выполнять любые задачи».

Результаты исследования были представлены в конце июня на 40-й Международной конференции по машинному обучению (ICML) в Гонолулу, Гавайи. Эта конференция является одной из трёх крупнейших в мире в сфере машинного обучения и искусственного интеллекта.

Одним из наиболее перспективных видов обучения ИИ является обучение с подкреплением (RL), позволяющее ИИ учиться методом проб и ошибок, адаптироваться в сложных средах и изменять поведение на ходу. Обучение с подкреплением может использоваться во всех сферах: от регулирования пробок на дорогах до рекомендаций в социальных сетях.

При этом ранее считалось, что использование случайных нейросетей (RND) не применимо для офлайн-обучения с подкреплением. В методе RND используются две нейросети — случайная и основная, которая пытается предсказать поведение первой. Свойство нейросети определяются её глубиной — количеством слоёв, из которых она состоит. Основная сеть должна содержать больше слоёв, чем случайная, иначе моделирование и обучение становится нестабильным или даже невозможным.

Использование неправильных размеров сетей привело к ошибочному выводу, что метод RND не умеет дискриминировать данные — отличать действия из датасета от прочих. Исследователи из Tinkoff Research обнаружили, что при использовании эквивалентной глубины сетей, метод RND начинает качественно различать данные. Затем исследователи приступили к оптимизации ввода и научили роботов приходить к эффективным решениям при помощи механизма слияния, основанного на модуляции сигналов и их линейном отображении. До этого при использовании метода RND поступающие сигналы не подвергались дополнительной обработке.

На визуализации ниже в верхнем ряду показаны предыдущие попытки применения метода RND, в нижнем — метод SAC-RND. Стрелки на изображении должны вести робота в одну точку — они указывают направление к правильному действию. Метод Tinkoff Research во всех случаях стабильно приводит робота в нужную точку

 Визуализация принятия решения роботами, обученными с помощью разных алгоритмов. Источник изображения: Tinkoff Research

Визуализация принятия решения роботами, обученными с помощью разных алгоритмов. Источник изображения: Tinkoff Research

Метод SAC-RND был протестирован на робототехнических симуляторах и показал лучшие результаты при меньшем количестве потребляемых ресурсов и времени. Открытие поможет ускорить исследования в области робототехники и обучения с подкреплением, поскольку оно снижает время получения устойчивого результата в 20 раз и является важным шагом на пути к созданию универсального робота.

Tinkoff Research — российская исследовательская некоммерческая группа. Учёные из Tinkoff Research исследуют наиболее перспективные области ИИ: обработку естественного языка (NLP), компьютерное зрение (CV), обучение с подкреплением (RL) и рекомендательные системы (RecSys). Команда курирует исследовательскую лабораторию «Тинькофф» на базе МФТИ и помогает талантливым студентам совершать научные открытия.

Tinkoff Pay получил поддержку бесконтактной оплаты с помощью Android-смартфонов

Клиенты банка «Тинькофф» с Android-смартфонами теперь смогут оплачивать покупки с помощью сервиса Tinkoff Pay не только в онлайне, но и в обычных розничных точках продаж. В сервисе появилась функция бесконтактной оплаты с помощью NFC, так что за покупки можно расплатиться, просто приложив смартфон к платёжному терминалу. Привязать к сервису можно любую карту «Тинькофф» платёжной системы «Мир».

 Источник изображения: «Тинькофф»

Источник изображения: «Тинькофф»

Теперь расплачиваться телефоном с Tinkoff Pay можно везде, где принимают бесконтактную оплату. Помимо удобства покупатели получают бонус в виде кешбэка. Чтобы воспользоваться Tinkoff Pay на смартфоне, нужно привязать к сервису одну или несколько карт платёжной системы «Мир» в приложении Tinkoff. Туда же можно добавить и кредитную карту. Прямо в момент оплаты можно выбрать карту, с которой спишутся деньги, а также посмотреть баланс счёта. Для подтверждения покупки на сумму свыше 1000 рублей нужно разблокировать телефон с помощью кода, отпечатка пальца или по лицу. Для покупок до 1000 руб. будет достаточно поднести телефон к терминалу с включённым экраном.

В «Тинькофф» поясняют, что функция оплаты через Tinkoff Pay будет появляться у пользователей в настройках приложения Tinkoff поэтапно. В течение двух недель она станет доступна всем клиентам банка, кто пользуется смартфонами на базе Android версии 7.0 и новее, оснащёнными поддержкой NFC. Также для подключения Tinkoff Pay необходимо обновить приложение Tinkoff до версии 6.18 или более поздней.

«В будущем в сервис Tinkoff Pay можно будет добавлять карты любых российских банков. Также мы работаем над технологией оплаты смартфоном с помощью Tinkoff Pay для владельцев телефонов от Apple», — отметили в банке.


window-new
Soft
Hard
Тренды 🔥
Администрация Трампа всё ещё планирует покупку TikTok 12 мин.
Adobe внедрит креативных ИИ-агентов в Photoshop и Premiere Pro 3 ч.
«Тантор Лабс» почти в пять раз увеличила выручку в 2024 году 9 ч.
Психогеографическая ролевая игра Hopetown в духе Disco Elysium взяла курс на Steam и получит поддержку русского языка 9 ч.
Commandos: Origins вышла на ПК и консолях — новая часть легендарной серии не смогла покорить критиков 10 ч.
Тема The Last of Us Part II не раскрыта: HBO продлила сериал «Одни из нас» на третий сезон, не дожидаясь выхода второго 11 ч.
Наследие Deus Ex, полноценный стелс и стрельба почти как в Destiny: журналисты показали 11 минут геймплея The Outer Worlds 2 12 ч.
Microsoft сломала Windows Hello последним обновлением безопасности 12 ч.
ИИ-помощник программиста Google Gemini Code Assist научился писать приложения по описанию и переводить код из одного языка в другой 14 ч.
Yandex B2B Tech запустил сервис мониторинга и реагирования на инциденты в облачной среде 14 ч.
В России начнут выпускать базовые станции, одновременно поддерживающие стандарты 2G, 4G и 5G 16 мин.
Крылатые качели: крупнейшие компании технологического сектора нарастили капитализацию на $1,5 трлн после объявления паузы в пошлинах 36 мин.
AMD тихо представила процессоры Ryzen 8000HX Dragon Range Refresh для игровых ноутбуков 3 ч.
Власти США передумали ограничивать экспорт в Китай ускорителей Nvidia H20 3 ч.
Новая статья: Обзор блока питания XPG CORE REACTOR II VE 850 6 ч.
Framework подняла цены на свои модульные ноутбуки, а через час передумала 8 ч.
Новая статья: Обзор моноблока MSI Modern AM273QP AI 1UM: модернизируй свое рабочее пространство правильно 8 ч.
Apple, Nvidia и прочие ИТ-гиганты отыграли падение акций после решения Трампа о тарифной паузе 10 ч.
Трамп взвинтил пошлину на товары из Китая до 125 % и поставил тарифы на паузу для других стран 10 ч.
Google представила ИИ-ускоритель TPU v7 Ironwood, созданный специально для инференса «размышляющих» моделей 10 ч.