Сегодня 25 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → частицы
Быстрый переход

Учёные случайно открыли частицу, которая приобретает или теряет массу в зависимости от направления движения

Группа учёных из Университета Пенсильвании и Колумбийского университета впервые в эксперименте обнаружила признаки полудираковских фермионов — теоретически предсказанных 16 лет назад квазичастиц. Их удивительная особенность заключается в том, что они полностью теряют массу при смене направления движения перпендикулярно предыдущему. Частицы без массы способны разгоняться до скорости света, что в нашей Вселенной позволено только фотонам.

 Модель поведения полудираковского фермиона. Источник изображения: Penn State University

Модель поведения полудираковского фермиона. Источник изображения: Penn State University

Признаки полудираковских фермионов были обнаружены при изучении квантовых свойств ряда топологических материалов, в частности соединения циркония, кремния и серы (ZrSiS) — популярного среди исследователей полуметалла. В каком-то смысле его строение напоминает графен, но отслоить листы атомной толщины от него пока никому не удалось. Если это получится и соединение проявит способность контролировать полудираковские фермионы, то этот материал найдёт множество применений — от батарей до датчиков.

«Это было совершенно неожиданно, — сказал Инмин Шао (Yinming Shao), доцент физики в Пенсильванском университете и ведущий автор статьи. — Мы даже не искали полудираковские фермионы, когда начинали работать с этим материалом. Однако мы наблюдали признаки, которые не могли объяснить, и оказалось, что мы впервые увидели эти необычные квазичастицы, которые иногда движутся так, как будто у них есть масса, а иногда — так, как будто её нет».

По большому счёту, полудираковские фермионы — это не отдельные самостоятельные частицы, а групповое поведение частиц, иначе говоря, квазичастицы. В данном случае групповое поведение электронов привело к тому, что при движении в одном направлении квазичастица обладала массой, а при движении в другом направлении — нет.

Исследователи использовали для изучения ZrSiS магнитооптическую спектроскопию. Этот метод заключается в том, что материал освещается инфракрасным светом и одновременно подвергается воздействию сильного магнитного поля, после чего отражённый свет анализируется. Применённое магнитное поле превышало силу магнитного поля Земли в 900 тысяч раз. Такое поле способно поднимать в воздух небольшие немагнитные предметы, например капли воды. Образец предварительно охладили до температуры –268,89 °C, что лишь немного выше абсолютного нуля.

«Мы изучали оптический отклик, то есть как электроны внутри этого материала реагируют на свет, а затем анализировали световые сигналы, чтобы понять, есть ли что-то интересное в фундаментальной физике материала, — пояснил Шао. — В нашем случае мы увидели множество ожидаемых особенностей, характерных для полуметалла. Но затем проявились совершенно загадочные свойства».

Для анализа данных эксперимента учёные привлекли теоретиков, совместно построивших модель поведения квазичастиц. Эта модель соответствовала предсказаниям полудираковских фермионов, сделанным в теоретических работах 2008–2009 годов. Открытие открывает новые перспективы для изучения квантовых свойств в области, которая до сих пор оставалась неизведанной.

БАК создал самую тяжёлую частицу антиматерии на Земле — антигипергелий-4

ЦЕРН сообщил, что научная коллаборация ALICE впервые обнаружила самые тяжёлые на сегодня экзотические частицы и их антиподы из антивещества. Учёных давно волнует проблема, по какой причине в нашем мире много материи и практически полностью отсутствует антиматерия. Материя и антиматерия должны были появиться в равных пропорциях, но в какой-то момент после Большого взрыва что-то пошло не так и антивещество почти исчезло из Вселенной. Ответ ищут в БАКе.

 Источник изображения: Janik Ditzel / ALICE collaboration

Источник изображения: Janik Ditzel / ALICE collaboration

Ранее в этом году коллаборация STAR на релятивистском коллайдере тяжёлых ионов (RHIC) наблюдала антигиперводород-4 (antihyperhydrogen-4). Это связанные состояния антипротона, двух антинейтронов и антилямбды. Всё это антиматерия, эксперименты с которой позволяют разобраться в причинах дисбаланса вещества и антивещества во Вселенной. В коллаборации ALICE, работающей в ЦЕРНе на Большом адронном коллайдере (БАК), решили пойти дальше и найти следующий по тяжести атом и его версию в виде антивещества.

Примечательно, что обнаружить следы новых частиц помог искусственный интеллект. Учёные взяли данные по экспериментам 2018 года, где на БАК сталкивались два пучка ионов свинца. Программа впервые смогла выявить признаки антигипергелия-4 (antihyperhelium-4) — антиматерии по отношению к экзотическому гипергелию-4. Атом антигипергелия-4 состоит из двух антипротонов, антинейтрона и антилямбды. Полученный результат имеет значение в 3,5 стандартных отклонения (сигма), а также представляет собой первое свидетельство существования самого тяжёлого гиперядра из антивещества, когда-либо полученного на БАКе.

Также в данном разборе было обнаружено ядро антигиперводорода-4 со стандартным отклонением на 4,5 сигма. Сотрудники ALICE подтвердили открытие своих коллег и смогли измерить выходы и массы обоих гиперядер. Надо сказать, что впервые гиперядра были обнаружены около 70 лет назад при распаде в атмосфере космических частиц. Учёные могут только завидовать космической энергии таких частиц, уровень которой едва ли возможно повторить в земных лабораториях.

К слову, антигипергелий-4 возник на БАК при энергии столкновений 5,02 ТэВ (тераэлектронвольт), что просто меркнет на фоне рекордных регистраций космических частиц с энергией в сотни эксаэлектронвольт, а это разница до восьми порядков.

Зарегистрированный учёными выход антигипергелия-4 равен единице, что означает, что он поровну образуется с атомами гипергелия-4. Учёные снова убедились, что вещества и антивещества во Вселенной должно быть поровну. Ищем причину асимметрии дальше.

Землю осыпало дождём электронов рекордно высоких энергий из загадочного близкого источника

Учёные впервые открыли факт бомбардировки Земли электронами заоблачных энергий. Такое могло произойти только в случае относительно близкого источника излучения. С наибольшей вероятностью это могла быть одна или несколько нейтронных звёзд. Установить точное направление на источник нельзя — электроны легко следуют изгибам магнитных линий и могли прилететь на Землю откуда угодно.

 Художественное представление пульсара. Источник изображения: NASA

Художественное представление пульсара. Источник изображения: NASA

Открытие сделала группа европейских учёных на основе данных, собранных за 10 лет наблюдений обсерваторией High Energy Stereoscopic System (HESS) в Намибии. Доля электронов в потоке космических частиц едва достигает 1 %. Их нелегко засечь в шуме и среди других регистраций. Также следует учитывать, что напрямую прилетевшие из космоса частицы на Земле засечь нельзя. Они сталкиваются с атомами атмосферных газов и вызывают ливень из их обломков, которые регистрируются приборами и это даёт возможность восстановить картину того, что прилетело на самом деле.

Энергии электронов традиционно маленькие — порядка сотен гигаэлектронвольт. В данных обсерватории HESS были обнаружены электроны с энергией 40 ТэВ, что на порядки выше обычного. Важно отметить, что источник этих высокоэнергичных частиц не мог быть слишком далёким, поскольку электроны быстро теряют энергию при путешествии по Вселенной.

Расчёты показали, что частицы испустил неизвестный объект в пределах нескольких тысяч световых лет от Земли. На подобное действие способны нейтронные звёзды — компактные объекты с чрезвычайно сильными магнитными полями (пульсары, если точнее). Поскольку точное направление на источник установить невозможно, остаётся только догадываться, была ли это одна звезда или несколько.

На установке СКИФ начался монтаж бустерного кольца синхротрона — его запустят к весне 2025 года

Как сообщает информагентство ТАСС, специалисты Института ядерной физики СО РАН приступили к монтажу оборудования бустерного синхротрона на установке «Сибирский кольцевой источник фотонов» (СКИФ). Работы планируется завершить весной 2025 года, после чего начнутся первые эксперименты на установке.

Общий вид на объекты ЦКП

Общий вид на объекты ЦКП «СКИФ». Рендер. Источник изображения: СО РАН

«К весне 2025 года все 44 гирдера бустера будут собраны в кольцо периметром 158 м и соединены с инженерными системами. Также к этому сроку будет смонтирована автоматизированная система радиационного контроля и станут возможны испытания этого сегмента ускорительного комплекса с электронным пучком. Здесь за полсекунды пучок будет разгоняться до 3 ГэВ — это энергия, на которой работает ЦКП "СКИФ"», — сообщили в пресс-службе.

Первая партия гирдеров — подставок под магнитное и вакуумное оборудование с погрешностью размещения 70 мкм — была доставлена в центр в начале лета 2024 года. Общий вес оборудования для монтажа бустера превышает 160 т. Чтобы выдержать заданную и рекордную точность (ранее допускалась погрешность порядка 100 мкм), в помещении была смонтирована геодезическая сеть, к которой будет осуществляться привязка при монтаже.

Всего для кольца бустера длиной 158 м потребуется установить 44 гирдера. На них будет установлено оборудование для разгона и фокусировки пучка элементарных частиц. В здании инжектора также ведётся монтаж линейного ускорителя. Ускоряющие и диагностические элементы линейного ускорителя уже смонтированы в соответствии с проектом. Осталось собрать вакуумную систему, первые эксперименты с которой ожидаются в декабре 2024 года.

Проект СКИФ относится к классу научных проектов «мегасайенс». Это синхротрон поколения 4+. Уникальные характеристики нового синхротрона позволят проводить передовые исследования с яркими и интенсивными пучками рентгеновского излучения во множестве областей — химии, физике, материаловедении, биологии, геологии, гуманитарных науках. Также СКИФ поможет решать задачи в интересах промышленности.

Нейтронные звезды могут быть окутаны облаками аксионов, и это может быть сущностью тёмной материи

Группа физиков из университетов Амстердама, Принстона и Оксфорда показала, что чрезвычайно лёгкие гипотетические частицы, известные как аксионы, могут возникать в виде больших облаков вокруг нейтронных звезд. В таком случае аксионы могли бы послужить объяснением неуловимой тёмной материи и, более того, их было бы не так уж трудно наблюдать.

 Источник изображения: Университет Амстердама

Источник изображения: Университет Амстердама

Посвящённая аксионам у нейтронных звёзд работа была опубликована 17 октября в журнале Physical Review X. Она стала продолжением теоретического исследования природы аксионов, но в отличие от предыдущей работы, в которой авторы рассматривали вопрос излучения аксионов звездой, в новой работе даётся оценка аксионам, которые навсегда «зависли» у звезды.

Нейтронные звёзды создают вокруг себя и внутри настолько запредельные условия для материи, что там могут появляться редкие частицы, а материя проявляет фантастические свойства. В объект размерами 12–15 км вмещается вещество массой, равной массе Солнца. Динамо такого объекта вырабатывает чудовищное магнитное поле, а аксионы, как считается, в сильных магнитных полях превращаются в фотоны.

Аксионы предложены около 50 лет назад для устранения ряда нестыковок в физике элементарных частиц. На самом деле — это торговая марка стирального порошка (или мыла), что образно призвано «отмыть» недостатки наших знаний дочиста. В теории они очень и очень лёгкие и поэтому сложно наблюдаемые в природе или в лабораториях. Точнее, их ещё никто не наблюдал. Как обосновывают авторы работы, мы просто не знали, где их лучше всего искать. По мнению учёных, нейтронные звёзды — лучший объект для поиска аксионов.

При распаде на фотоны аксионы испускают слабый сигнал в силу своей запредельной лёгкости. Но вокруг нейтронной звезды за миллионы лет может скопиться такое невероятное облако аксионов, что оно будет излучать непрерывный и относительно легко детектируемый сигнал. Аксионы не будут падать на нейтронную звезду поголовно в силу их слабого взаимодействия с обычным веществом, поэтому аксионные облака могут являться непременным атрибутом абсолютно всех нейтронных звёзд.

Слабое взаимодействие аксионов с обычным веществом делает их неплохими кандидатами в тёмную материю. Согласно расчётам команды, облако аксионов у нейтронной звезды создаёт в локальном пространстве плотность, на двадцать порядков превышающую плотность тёмной материи. Наблюдение за облаками аксионов у нейтронных звёзд может открыть множество секретов в физике элементарных частиц и пролить свет на тёмную материю. Кстати, во время смерти нейтронной звезды облако аксионов может произвести характерную колоссальную вспышку, которую тоже можно наблюдать нашими инструментами.

Возможность существования аксионных облаков также открывает массу направлений в теоретической физике от моделирования динамики нейтронных звёзд с учётом их влияния до описания поведения самих облаков. Основы для необходимых расчётов и наблюдений уже заложены, но нужна дополнительная работа, включая численное моделирование.

Молнии связали с рождением угрожающих космонавтам электронов-убийц в поясах Ван Аллена

Учёные обнаружили связь между молниями в атмосфере Земли и появлением электронов с околосветовыми скоростями в радиационных поясах Ван Аллена вокруг планеты. В данных спутниковых наблюдений за десять лет такие события часто разделены интервалами менее секунды, что указывает на прямую связь. Это означает, что погода на Земле имеет прямое воздействие на околоземную космическую погоду, которая способна оказывать негативное влияние на спутники и космонавтов.

 Снимок грозы с борта МКС. Источник изображений: NASA

Снимок грозы с борта МКС. Источник изображений: NASA

Пояса Ван Аллена — это две относительно стабильных области пространства вокруг Земли, которые служат ловушкой для высокоэнергетических частиц из космоса и от Солнца. Пояса формирует магнитное поле планеты: внутренний пояс простирается от 640 до 9600 км, а внешний — от 13 500 до 58 000 км. Без этой защиты поверхность Земли была бы вычищена радиацией от всей биологической жизни. Электроника также боится частиц с высокой энергией, которые могут вызывать как сбои, так и непосредственное повреждение чипов.

Группа учёных во главе с Максом Файнландом (Max Feinland) из Университета Колорадо (University of Colorado) в Боулдере проанализировала данные спутниковых наблюдений за активностью в поясах Ван Аллена в период с 1996 по 2006 год и обнаружила там 45 всплесков появления облаков высокоэнергетических электронов со скоростями, близкими к скорости света. Такие частицы легко покидали области поясов Ван Аллена и становились угрозой как космонавтам, так и спутникам на всех орбитах. Но что самое удивительное, ряд событий возникал сразу после разрядов молний в атмосфере Земли.

 Схематическое изображение поясов Ван Аллена

Схематическое изображение поясов Ван Аллена

Традиционно люди на орбите и операторы спутников предупреждаются о радиационной опасности в связи с активностью Солнца, будь то просто вспышки или выбросы корональной массы. Появление высокоэнергетических частиц с тыла никто не учитывает, однако теперь учёным нужно внимательнее изучить процесс их рождения и, не исключено, что тем самым проявится новый контур угрозы. Пока исследователи полагают, что порождаемые грозовыми разрядами электромагнитные волны — так называемые атмосферики (волны Уистлера в зарубежной литературе) — провоцируют цепную реакцию в облаках низкоэнергетических электронов в поясах Ван Аллена, что ведёт к появлению электронов-убийц и их разлёту во всех направлениях.

Для российского синхротрона СКИФ собран первый детектор

Осталось около полугода до начала работы синхротрона СКИФ в наукограде Кольцово Новосибирской области и запуска первой очереди исследовательских станций на его основе. И одной из первых заработавших на комплексе станций станет лаборатория для изучения быстрых переходных процессов в материалах. На днях российские учёные сообщили об изготовлении первых детекторов как для этой лаборатории, так и для синхротрона.

 Источник изображения: https://strana-rosatom.ru

Источник изображения: https://strana-rosatom.ru

Всего на СКИФе будет 30 экспериментальных станций. Полное их создание растянется на несколько лет, но сам синхротрон и первые станции будут завершены к концу 2024 года. Эксплуатация синхротрона и первой очереди лабораторий начнётся в первой половине 2025 года. Представленный на днях детектор позволит снимать быстрые процессы в материалах со скоростью до 10 млн кадров в секунду. Образцы будут облучаться синхротронным излучением (разогнанными до релятивистских скоростей электронами).

Детектор GINTOS для лаборатории (координатный детектор на полупроводниках) изготовили сотрудники Томского государственного университета (ТГУ) и Института ядерной физики им. Будкера (ИЯФ).

«Детектор GINTOS позволит исследовать реакцию материалов на импульсные тепловые и механические нагрузки. Это необходимо для понимания процессов, которые будут происходить, например, в термоядерном реакторе ИТЭР при попадании раскалённой плазмы на вольфрамовую стенку. Также детектор позволит изучать распространение ударных волн и других динамических процессов в микросекундном диапазоне», — рассказал главный научный сотрудник ИЯФ Лев Шехтман.

Как нетрудно понять, датчики GINTOS должны быть очень быстродействующими. Для них радиофизики ТГУ разработали сенсоры на основе арсенида галлия, компенсированного хромом. Этот материал обладает повышенной радиационной стойкостью и чувствительностью к рентгеновскому излучению.

«Полупроводниковые сенсоры преобразуют фотонный сигнал в электрический, а электроника регистрирует этот сигнал и передаёт изображение в компьютер, — объясняет заведующий лабораторией детекторов синхротронного излучения ТГУ Олег Толбанов. — Количество кадров очень велико, поэтому результат съёмки — это не отдельные изображения, а фильм».

Синхротрон СКИФ станет первым в мире источником синхротронного излучения поколения 4+. Он откроет широкие возможности для исследований в области материаловедения, биологии, фармацевтики, физики, квантовой химии и многих других сфер.

Учёные создали самые тяжёлые атомы антиматерии в истории

Международная группа учёных получила самые тяжёлые атомы антиматерии, когда-либо созданные в коллайдере на Земле. Антивещество антигипергидроген-4 появилось в установке RHIC в Брукхейвенской национальной лаборатории. Исследованием руководили китайские учёные, которые сообщили о достижении. Это шаг к новым знаниям, который поможет человечеству продвигаться вперёд в своём развитии.

 Источник изображения: Institute of Modern Physics, China

Источник изображения: Institute of Modern Physics, China

Изучение антиматерии даёт подходы к поиску новой физики или к объяснению дисбаланса в соотношении вещества и антивещества, возникшего вскоре после Большого взрыва. Если бы материи и антиматерии было поровну или они были бы полностью идентичны, за исключением знака заряда, то Вселенная не возникла бы. Произошло бы взаимное уничтожение вещества и антивещества с выделением энергии. Между тем, мы наблюдаем материальную Вселенную вокруг нас, а антиматерия, если и встречается в природе, то в крайне редких случаях. В основном её производят в лабораториях, включая столкновения частиц в коллайдерах.

Как вариант, возникло предположение, что вещество и антивещество могут отличаться по всё ещё неуловимым для наших приборов свойствам, а не только полярностью заряда. Поэтому так важно проводить эксперименты на коллайдерах, изучая все доступные параметры антиматерии в широком спектре веществ. Получение на коллайдере RHIC атомов (ядер) антигипергидрогена-4 относится к таким экспериментам, позволяя измерить массу, энергию и другие свойства конкретно этого антивещества для их сравнения с обычным гипергидрогеном-4.

Полученные в результате работы коллайдера RHIC атомы антигипергидрогена-4 состоят из антипротона, двух антинейтронов и антигиперона. Последние редки в экспериментах (как и гипероны), но, по сути, это чуть более тяжёлые версии антинейтрона. Гипероны и антигипероны отличаются очень малым временем жизни — около одной десятой наносекунды. Поэтому сами по себе ядра антигипергидрогена-4 не обнаруживаются на регистрирующем оборудовании. Зато остаются следы их распада (треки), по которым можно восстановить исходную картину.

Из 6,6 млрд столкновений удалось уверенно идентифицировать всего 16 ядер антигипергидрогена-4. Это немного, но достаточно для оценки их свойств. Исследователи продолжат эксперименты, чтобы набрать больше данных по этому антивеществу — пока самому тяжёлому, которое было получено на коллайдере. Это поможет проверить наши физические теории и, возможно, указать новое направление для их развития, если удастся узнать что-то новое и необычное об антиматерии.

В китайской лаборатории впервые обнаружили признаки гравитона — гипотетической частицы по переносу гравитации

Международная группа учёных во главе с китайскими исследователями поставила эксперимент, в ходе которого впервые удалось обнаружить признаки существования кванта гравитационного поля — гравитона, который также может служить переносчиком гравитационного взаимодействия. Концепция гравитона сформировалась без малого 100 лет назад, но лишь теперь учёные получили шанс приблизиться к его открытию.

 Источник изображения: SCMP

Источник изображения: SCMP

В подготовке эксперимента и в анализе его результатов участвовали учёные из Китая, США и Германии. Установка создавалась в Нанкинском университете, на что ушло три года. Анализируемый материал необходимо было охладить до температуры вблизи абсолютного нуля и обеспечить воздействие на него тонко настроенным лазером для оценки возбуждения электронов в образце. Фактически это взаимоисключающие требования, ибо возникает мостик тепла между экспериментальной средой и измерительными инструментами.

Китайцы справились. Полученный из США образец высокочистого арсенида галлия был охлаждён до -273,1 °C и помещён в магнитное поле на шесть порядков сильнее, чем магнитное поле Земли. Задача стояла создать в материале толщиной с атом эффект конденсированного состояния электронов, поток которых начинал вести себя как жидкость. Затем с помощью лазера оценивались возбуждённые состояния электронов и, в итоге, измерялся их спин.

Как известно, спин электрона не целый и равен 1/2. У гравитона же спин должен быть равен 2, что делает его уникальным, если таковой вообще существует в природе. Анализ данных эксперимента показал, что отдельные частицы характеризовались спином со значением 2. Такая регистрация проведена впервые в мире и оставляет место для дальнейшего поиска гравитонов.

Если гравитон будет обнаружен, а это безмассовая частица не имеющая также зарядов, то это даст надежду на создание единой теории поля. До сих пор нет полной связи между классической физикой и квантовой. Именно отсутствие понимания сути гравитационного взаимодействия не позволяет соединить эти два мира.

Датчик для Большого адронного коллайдера поможет удалять опухоли головного мозга

От большой науки редко ждут немедленного практического результата, но исключения бывают. Свежим примером стало использование датчика для регистрации столкновений частиц на БАК для картирования тканей головного мозга при работе с опухолями. Датчик помогает определять контуры опухоли и даёт возможность уничтожить её с минимальным вредом для пациента.

 Источник изображения: CERN

Источник изображения: CERN

В обычных условиях для облучения опухоли электронным пучком карта тканей создаётся с помощью предоперационной компьютерной томографии. К моменту операции ткани могут сдвинуться, и работа с опухолью может быть неточной. Разрушение электронным пучком здоровых тканей мозга ни к чему хорошему не приведёт. Пациент может потерять фрагменты памяти, элементы сенсорики и моторики.

Чтобы чётко определять края злокачественной ткани, чешская компания ADVACAM использовала созданный для экспериментов с элементарными частицами датчик Timepix компании Medipix Collaborations. Датчик фиксирует вторичное излучение в виде рассеивания электронного пучка на живых тканях и опухоли. Если картина меняется — в поле действия пучка попадает здоровая ткань — работа пучком по опухоли прекращается. Сейчас это просто остановка процедуры для проведения новой томографии.

В будущем разработчики обещают создать установку для автоматического управления проектором в ходе операции, что упростит и ускорит процедуру удаления опухоли, а также снизит опасность повреждения здоровых тканей. Созданный для задач CERN прибор принесёт фактически немедленную пользу, на которую при его разработке даже не рассчитывали.

Учёные приблизились к созданию ускорителя электронов размером с обувную коробку

Исследователи из Стэнфордского университета разработали и создали крошечный ускоритель электронов, который может быть собран в корпусе размером с коробку из-под обуви. Когда-нибудь они заменят мегадорогие ускорители для передовых исследований в физике и внесут кардинальные перемены в медицинское обслуживание, промышленность и даже повседневную жизнь.

 Источник изображения:  Moore Foundation / Payton Broaddus

Источник изображения: Moore Foundation / Payton Broaddus

Исследователи показали, что кремниевый диэлектрический лазерный ускоритель (DLA) способен как ускорять, так и направлять электроны, создавая сфокусированный пучок электронов высокой энергии. «Если бы электроны были микроскопическими автомобилями, мы бы как будто впервые сели за руль и нажали на газ», — пояснила 23-летняя Пейтон Броддус (Payton Broaddus), кандидат наук в области электротехники и ведущий автор статьи, опубликованной 23 февраля с подробным описанием прорыва в журнале Physical Review Letters.

Сегодня ускорители частиц не отличаются компактностью, начинаясь от размеров с приличный рабочий стол и заканчивая Большим адронным коллайдером с кольцом длиной почти 27 км. Это дорогостоящие научные приборы, использовать которые полноценно могут в основном академические учёные. Создание компактных и относительно недорогих или вовсе недорогих ускорителей позволит применять их в медицине для детальной визуализации внутренних тканей органов человека и для лечения опухолей. Ускорители помогут с анализом материалов, веществ и с неразрушающим контролем качества. Наконец, появятся приборы, по-настоящему показывающие нитратный и даже молекулярный состав купленных в магазине фруктов и овощей.

Около 10 лет назад исследователи из Стэнфорда начали экспериментировать с наноразмерными структурами, изготовленными из кремния и стекла, которые без деформаций выдерживали большие перепады температур, чем металлические части ускорителей. В 2013 году был создан прототип крошечного ускорителя из стекла на основе импульсных инфракрасных лазеров, который успешно разгонял электроны. Под эту разработку Фонд Гордона и Бетти Мур в рамках международного сотрудничества Accelerator on Achip (ACHIP) выделили средства на создание мегаэлектронвольтового ускорителя размером с обувную коробку.

 Изображение трека для создания сфокусированного пучка электронов. Источник изображения: Physical Review Letters

Изображение трека для создания сфокусированного пучка электронов. Источник изображения: Physical Review Letters

В результате исследований была разработана микроструктура, которая оказалась способна фокусировать пучок электронов в двух плоскостях, ускоряя и направляя их вдоль горизонтальной плоскости. Электроны вводятся с одной стороны субмиллиметрового трека, а с обоих его концов происходит импульсное освещение лазерами. Предложенное решение позволило придать электронам дополнительно 25 % энергии — ускорить их до 23,7 кэВ. Это ускорение сопоставимо с возможностями классических настольных ускорителей, но реализовано в «коробке из-под обуви».

Дальнейшее совершенствование схемы позволит поднять энергию ускорения до запланированного уровня в 1 МэВ. Каскад таких ускорителей или использование на начальном этапе других схем, например, этой, созданной коллегами из Университета Фридриха-Александра в Эрлангене и Нюрнберге (FAU), позволит изготавливать компактные усилители с разгоном электронов до субсветовых скоростей. Но это работа для далёкого будущего. Сейчас в этом направлении сделаны хоть и успешные, но только первые шаги.

Физики впервые «сфотографировали» в капле воды возбуждённый рентгеном электрон

Американские учёные только что прорубили окно в новую область экспериментальной физики. Они смогли получить энергетический образ движения электрона вокруг атома водорода в капле воды ещё до того, как атом пришёл в движение. До сих пор у учёных не было инструментов для подобной детализации процессов в веществе, что раскроет больше деталей о физике и химии многих процессов и, особенно, о радиационном воздействии на живые клетки.

 Источник изображений: PNNL

Источник изображений: PNNL

В эксперименте, отдалённо похожем на съёмку замедленного видео, учёные выделили энергетическое движение электрона, одновременно «заморозив» движение гораздо более крупного атома, вокруг которого вращался целевой электрон, сделав это в образце обычной жидкой воды. О своей работе учёные сообщили в статье в журнале Science. Работа в основном была направлена на изучение высокоэнергетического излучения на живые клетки, что нужно для космоса, радиотерапии опухолей и не только.

«Химические реакции, вызванные излучением, которые мы хотим изучить, являются результатом электронного отклика мишени, который происходит в аттосекундном масштабе времени», — пояснила Линда Янг (Linda Young), старший автор работы и заслуженный научный сотрудник Аргоннской национальной лаборатории. — До сих пор радиохимики могли определять события только в пикосекундном масштабе времени, что в миллион раз медленнее, чем аттосекунда. Это всё равно, что сказать "я родился, а потом умер". Вы хотели бы знать, что происходит в промежутке? Это то, что мы сейчас можем сделать».

Чтобы добиться результата, межведомственная группа учёных из нескольких национальных лабораторий Министерства энергетики США, а также университетов США и Германии объединила эксперименты и теорию, чтобы в режиме реального времени выявить последствия воздействия ионизирующего излучения от источника рентгеновского излучения на вещество. Исследование проводилось при поддержке Центра пограничных энергетических исследований межфазной динамики в радиоактивных средах и материалах (IDREAM), с финансовой поддержкой Министерства энергетики США в штаб-квартире в Тихоокеанской Северо-Западной национальной лаборатории (PNNL).

Не секрет, что субатомные частицы, например, электроны, движутся так быстро, что для фиксации их действий требуется датчик, способный измерять время в аттосекундах. Это настолько быстро (или мало), что в каждой секунде, например, больше аттосекунд, чем прошло секунд за всю историю Вселенной.

Проведённое авторами исследование опирается на открытие и создание аттосекундных рентгеновских лазеров на свободных электронах, за что в прошлом году, в частности, была присуждена Нобелевская премия по физике. В Национальной ускорительной лаборатории SLAC есть источник такого света (LCLS), чем воспользовались экспериментаторы.

 Экспериментальная установка, создающая тончаштую плёнку воды шириной около 1 см

Экспериментальная установка, создающая тончайшую плёнку воды шириной около 1 см

В качестве тестового образца для эксперимента была выбрана обычная жидкая вода. Первый аттосекундный импульс возбуждал электроны, а второй измерял отклик. Это позволило отреагировать датчикам настолько быстро, что возбуждённое состояние электрона проявило себя ещё до того, как атом водорода в молекуле пришёл в движение. Раньше в процессе подобного наблюдения с помощью импульсов большей длительности картина была настолько смазанной, что учёные предполагали существование ряда промежуточных состояний. Аттосекундный лазер показал, что промежуточных состояний нет — это всё миражи или помехи.

«Теперь у нас есть инструмент, с помощью которого, в принципе, вы можете следить за движением электронов и видеть только что ионизированные молекулы по мере их образования в режиме реального времени», — резюмировали достижение авторы исследования.

Cоздан сверхкомпактный ускоритель частиц с энергией в 10 миллиардов электрон-вольт

Учёные из Техасского университета в Остине создали «Усовершенствованный лазерный ускоритель кильватерного поля», который имеет очень компактные размеры, но при этом генерирует высокоэнергетический пучок электронов — до 10 ГэВ или 10 миллиардов электрон-вольт. Это настоящий прорыв в области ускорителей частиц.

Источник изображения: Bjorn «Manuel» Hegelich

Учёные продолжают изучать возможности применения этой технологии, включая потенциал ускорителей частиц в полупроводниковой технологии, медицинской визуализации и терапии, исследованиях в области материалов, энергетики и медицины.

Недавно группа учёных разработала компактный ускоритель частиц, получивший название «усовершенствованный лазерный ускоритель кильватерного поля». Устройство при длине менее 20 метров генерирует электронный пучок с энергией 10 миллиардов электрон-вольт, утверждается в заявлении Техасского университета в Остине. Сам лазер работает в 10-сантиметровой камере, что значительно меньше традиционных ускорителей частиц, которым требуются километры пространства.

Работа ускорителя опирается на инновационный механизм, в котором вспомогательный лазер воздействует на гелий. Газ подвергается нагреву до тех пор, пока не переходит в плазму, которая, в свою очередь, порождает волны. Эти волны обладают способностью перемещать электроны с высокой скоростью и энергией, формируя высокоэнергетический электронный луч. Таким образом получается уместить ускоритель в одном помещении, а не строить огромные системы километрового масштаба. Данный ускоритель был впервые описан ещё в 1979 году исследовательской группой из Техасского университета под руководством Бьорна «Мануэля» Хегелича (Bjorn «Manuel» Hegelich), физика и генерального директора TAU Systems. Однако недавно в конструкцию был внесен ключевой элемент: использование металлических наночастиц. Эти наночастицы вводятся в плазму и играют решающую роль в увеличении энергии электронов в плазменной волне. В результате электронный луч становится не только более мощным, но и более концентрированным и эффективным. Бьорн «Мануэль» Хегелич, ссылаясь на размер камеры, в которой был получен пучок, отметил: «Теперь мы можем достичь таких энергий на расстоянии в 10 сантиметров».

Исследователи использовали в своих экспериментах Техасский петаваттный лазер, самый мощный импульсный лазер в мире, который излучал сверхинтенсивный световой импульс каждый час. Один импульс петаваттного лазера примерно в 1000 раз превышает установленную в США электрическую мощность, но длится всего 150 фемтосекунд — примерно миллиардную долю от продолжительности удара молнии.

Учёные намерены использовать эту технологию для оценки устойчивости космической электроники к радиации, получения трёхмерных визуализаций новых полупроводниковых чипов, а также для создания новых методов лечения рака и передовой медицинской визуализации. Кроме того, этот ускоритель может быть использован для работы другого устройства, называемого рентгеновским лазером на свободных электронах, который может снимать замедленные видеоролики процессов в атомном или молекулярном масштабе. Примеры таких процессов включают взаимодействие между лекарствами и клетками, изменения внутри батарей, которые могут привести к воспламенению, а также химические реакции, происходящие в солнечных батареях, и трансформацию вирусных белков при заражении клеток.

Команда проекта намерена сделать систему ещё более компактной. Они хотят создать лазер, который помещается на столешнице и способен выдавать импульсы множество раз в секунду. Это значительно повысит компактность всего ускорителя и расширит возможности его применения в гораздо более широком диапазоне по сравнению с обычными ускорителями.

Астрономы поймали частицу Аматэрасу с высочайшим уровнем энергии — она прилетела из пустой части Вселенной

Учёные из коллаборации Telescope Array сообщили о регистрации «божественной» частицы, прилетевшей к нам из космоса. Поскольку частица прилетела из войда — из пустой области Вселенной — её источником может оказаться неизвестная нам физика, что делает открытие невообразимо ценным для учёных.

 Источник изображения: Osaka Metropolitan University/L-INSIGHT, Kyoto University/Ryuunosuke Takeshige

Ливень из вторичных частиц на массив датчиков телескопа TA в представлении художника. Источник изображения: Osaka Metropolitan University/L-INSIGHT, Kyoto University/Ryuunosuke Takeshige

Зарегистрированная энергия космической частицы достигла 244 эксаэлектронвольта (1018 электронвольт). Она стала одной из мощнейших по величине заряда из всех зарегистрированных нашей наукой. Первая подобная частица была детектирована в 1991 году, и её энергия составила 320 эксаэлектронвольт, за что она получила прозвище «Oh-My-God». В 1993 и 2001 годах были зарегистрированы ещё две частицы с энергиями, соответственно, 213 и 280 эксаэлектронвольт. Происхождение всех их остаётся невыясненным.

Последняя частица была детектирована на установке Telescope Array утром 27 мая 2021 года, за что её потом назвали в честь японской богини Солнца Аматэрасу (в коллективе присутствовал японец). Телескоп TA представляет собой массив датчиков со сторонами около 700 км с шагом в 1,2 км. Считается, что космические частицы максимальных энергий прибывают на Землю с частотой менее одной в сто лет на 1 км2. И чем больше массив датчиков, тем выше вероятность засечь такую частицу.

Саму частицу Аматэрасу массив датчиков увидеть не может. Она разрушается в атмосфере при столкновении с атомами в воздухе и создаёт ливень обломков — частиц с меньшими энергиями, которые, собственно, обнаруживают детекторы. Данные с датчиков позволяют восстановить параметры исходной частицы и дают информацию для расчёта её траектории. Узнать откуда она прилетела — это главная задача в таких исследованиях.

Считается, что частицы с высочайшими уровнями энергии рождаются вне нашей галактики. Их источниками могут быть релятивистские процессы в чёрных дырах или невообразимые по мощности гравитационные возмущения. Наконец, причиной появления таких частиц может оказаться неизвестная нам физика вне рамок Стандартной модели. Частица Аматэрасу может оказаться одной из таких, поскольку она пришла из области Вселенной, где нет никаких видимых источников. Для учёных это редкая возможность буквально пощупать нечто неизвестное науке, и они обещают в полной мере воспользоваться этим.

Природа обманула магию физики: дважды магический и самый тяжёлый изотоп кислорода оказался нестабильным

Японские учёные первыми в мире синтезировали самый тяжёлый изотоп кислорода-28 (28O). На удивление исследователей, изотоп 28O сразу же распался, что противоречит теориям Стандартной модели. Это подрывает основы наших знаний о мироздании — о сильном ядерном взаимодействии элементарных частиц, чему теперь предстоит найти объяснение.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Самая распространённая на Земле форма изотопа кислорода — это кислород-16. Кислород-28 должен иметь на 12 нейтронов больше, но его до сих пор никто не смог синтезировать. Это удалось сделать учёным из Токийского технологического института. После серии ядерных преобразований на установке Riken RI в Вако (Япония) отсеянный спектрометром изотоп фтора-29 с девятью протонами направили на мишень из жидкого водорода. После столкновения водород и 29F потеряли по одному протону и образовали молекулу изотопа кислорода-28.

Впрочем, о появлении 28O учёные смогли судить лишь косвенно, по следам его распада. Вопреки предсказаниям теории, он разрушился чрезвычайно быстро — через зептосекунду (10-21 с). Стандартная модель представляла, что изотоп кислорода-28 сможет существовать практически вечно, настолько он должен был оказаться стабильным.

«Это открывает очень, очень большой фундаментальный вопрос о самом сильном взаимодействии в природе — ядерной силе, — прокомментировал открытие изданию New Scientist Ритупарна Канунго, физик из Университета Святой Марии (Канада), не принимавший участия в эксперименте.

Стандартная модель утверждает, что частицы будут стабильными, если оболочки в ядре атома заполнены определенным числом протонов и нейтронов, которое называют «магическим» числом. Кислород-28 содержит 20 нейтронов и 8 протонов — оба числа являются магическими, что заставляло предположить, что эта молекула должна была быть чрезвычайно стабильной или «дважды магической». Однако этого не произошло.

 Схема эксперимента по синтезу тяжёлых изотопов кислорода. Источник изображения: R. Kanungo / Nature 2023

Схема эксперимента по синтезу тяжёлых изотопов кислорода. Источник изображения: R. Kanungo / Nature 2023

О синтезе 28O учёные узнали по продуктам его распада, который произошёл, по-видимому, за два этапа. В конечном итоге остался изотоп кислород-24 и четыре нейтрона.

«Я был удивлен, — сказал в интервью Nature Такаши Накамура, физик из Токийского технологического института и соавтор исследования. — Лично я думал, что это двойная магия. Но природа сказала своё слово».

Хотя эксперимент ещё не был воспроизведен в других лабораториях, результаты исследования позволяют предположить, что существующий список магических чисел может не давать полной картины того, насколько стабильны молекулы. В частности, ещё в 2009 году учёные показали, что изотоп кислорода-24 ведёт себя так, как будто он дважды магический, хотя у него нет магического числа протонов и нейтронов в оболочке. Подобные загадки имеют особую ценность для науки. Они указывают цель, к которой надо двигаться дальше.


window-new
Soft
Hard
Тренды 🔥
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 16 мин.
Новая реальность: успех S.T.A.L.K.E.R. 2: Heart of Chornobyl позволит GSC добавить в игру вырезанный контент 55 мин.
«Недостаточно слов, чтобы выразить благодарность за такой подарок»: неофициальная русская озвучка трейлера The Witcher 4 привела фанатов в восторг 2 ч.
ИИ научили генерировать тысячи модификаций вирусов, которые легко обходят антивирусы 3 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 3 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 4 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 5 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 6 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 7 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 7 ч.